header advert
Results 1 - 5 of 5
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 44 - 44
1 Mar 2017
Tanimura E Niki Y Katoh S Matsumoto H
Full Access

Background

The indication of unicompartmental knee arthroplasty (UKA) for end-stage osteoarthritis (OA) remains controversial. This study aimed to investigate patient reported outcomes (PROs) of UKA in patients with severe varus deformity of the knee and compare the results with those of total knee arthroplasty (TKA) at mid-term follow up.

Methods

A total of 96 TKAs of 69 patients and 61 UKAs of 50 patients were included. All patients presented with severe knee OA with hip-knee-ankle angle (HKA) ranged from −25 degree to −10 degree, preoperatively. Mean HKAs in TKA group and UKA group were −14.95º and −13.38º, respectively. PROs were assessed using Knee Society Score (KSS 2011), PainDETECT score (PD), and Pain Catastrophizing Scale (PCS) at a mean follow up of 58.65 months for TKA and 58.05 months for UKA. Kaplan-Meier survival analysis was performed to assess implant survival. Complication rate was also assessed. All data were compared between TKA group and UKA group.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 142 - 142
1 Mar 2013
Chen Y Kurosu S Lee Y Matsumoto H Koizumi Y Chiba A
Full Access

Introduction

Metal-on-metal (MOM) hip joints have regained a favor in arthroplasty since they own excellent wear resistance. In this study, wear tests by using a hip joint simulator were conducted with MOM bearings of specified 40 mm femoral heads. The influence of clearance on the wear behavior was investigated. Furthermore, an optimized radial clearance was estimated by lubricant film thickness and contact pressure analysis.

Materials and methods

Co-27Cr-5Mo-0.13N-0.05C (hereafter CCMN) alloy (mass %) was used. The ingots were vacuum induction melted, homogenized and hot forged successively. The microstructure shows equiaxed crystal grains with abundant annealing twins but no carbides.

Two groups of bearings, indicated as cr 1 and cr 2, were designed. The radial clearances for cr 1 and cr 2 were 37.9 and 148.7 μm, respectively. Wear tests were conducted in a hip joint simulator (INSTRON 8870) in Hanks' solution at 37±2°f. The force and 3-axile angle of movement were applied on the articulation according to ISO 14242-1 for 1.5 million cycles (Mc).

The contact pressures on the hip joints were also analyzed by using ABAQUS. The femoral heads were set 40 mm with radial clearances of 0–200 μm. Half models were set up and only the maximum force of 3 kN converted as pressure was applied as boundary condition.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 146 - 146
1 Mar 2013
Chiba A Kurosu S Koizumi Y Matsumoto H Lee Y
Full Access

Rapid manufacturing using laser beam and/or electron beam has been applied to fabrication of artificial hip and knee joints in quite recent years. In the electron beam melting (EBM) method, the high energy electron beam effectively melts the metal powder without creating flaws such as porosities or inclusions of oxide particles during building. Thus it is found that EBM technique for rapid manufacturing of artificial hip and knee joints processes a higher possibility as the next-generation methodology for fabrication of the medical devices such as hip and knee joints. In the present study, we focus on the EBM technique. The microstructures and mechanical properties of Co-29Cr-6Mo alloy with C and N additions, produced by using EBM method, were studied using X-ray diffraction, electron back scatter diffraction, transmission electron microscope (TEM), Vickers hardness tests, and tensile tests, focusing on the influences on the build direction and the various heat treatments after build. It is found that the microstructures for the as built specimens were changed from columnar (Fig. 1a) to eqiaxed grain structure (Fig. 1c) with average grain size of approximately 10–20 μm due to the heat treatment employing the reverse transformation from a lamellar (hcp + Cr2N) phase to an fcc phase. Our results will contribute to the development of biomedical Ni-free Co–Cr–Mo–N-C alloys, produced by EBM method, with refined grain size and good mechanical properties, without requiring any hot workings.

Fig. 1 Inverse pole figure (IPF) maps of microstructure of samples produced by EBM method, taken by EBSD. (a) as-built, (b) after aging treatment, (c) after reverse transformation heat treatment (RT-HT).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 144 - 144
1 Jun 2012
Matsumoto H Kurosu S Chiba A Landron C Fabregue D Maire E
Full Access

Co-Cr-Mo alloys represent the most important category of metallic biomaterial for surgical implant applications. Recently, Chiba et al. developed a new type of bio- medical Co based alloy of Co-29Cr-6Mo-0.14N alloy. In this alloy design, the content of N is intended to be controlled to obtain the microstructure consisting of ? single phase. This developed alloy exhibits the lower stacking energy as compared to that of the practical bio-medical Co-Ni based alloy, thereby resulting in the deformation behavior accompanied by strain induced e martensitic transformation.

In this work, the damage process leading to fracture during tensile testing of a biomedical grade Co-29Cr-6Mo-0.14N alloy was analyzed on the basis of three-dimensional damage observation using X-ray tomography and electron backscattered diffraction of the fractured specimen. Initial cracking occurred at grain and annealing twin boundaries, where strain concentrates due to impingement of e-hcp plates formed through strain induced martensitic transformation (SIMT). Crack propagated along interface between ?-fcc matrix and SIMTed e-hcp on {111}, resulting in the occurrence of a quasi-cleavage fracture.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 22 - 22
1 Jun 2012
Chiba A Lee Y Kurosu S Matsumoto H
Full Access

Co-Cr-Mo alloys are widely used for biomedical implant materials such as artificial hip and knee joints owing to their excellent corrosion and wear resistance as well as higher strengthening properties. However, the alloys exhibits sever brittle nature under an as-cast condition. It is generally recognized that refinement of the grain size of the metallic materials by means of hot-forging processes is an effective methodology to strengthen the alloy. Dynamic recrystallization (DRX) is an effective metallurgical process for grain refinement during hot deformation. However, there are few studies on the hot deformation behavior of Co-Cr-Mo alloy, especially grain refinement through DRX. In the present study, DRX and grain refinement during hot deformation of Co-29Cr-6Mo alloy has been investigated under various conditions such as deformation temperature and strain rate.

Although at strain of 5% hot deformed microstructure maintains the original grains, the grain size decreases with increasing the strain and exhibits the average grain size of approximately 2μm at strain of 60%. Ultra fine grained microstructure with the grain size of approximately 0.5 μm was obtained under deformation at a 1323 K at a strain rate of 0.1s-1. The original grains are broken up into different grains due to the new boundary formation not only near the initial boundaries but also in the interior of the grains at large strain. This grain fragmentation without bulging in the course of hot deformation is associated with considerably low stacking fault energy (SFE) of the Co-29Cr-6Mo alloy even at the deformation temperatures.