Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 30 - 30
1 May 2012
Kosugi S Tanka Y Yamaguchi S Taniguchi A Shinohara Y Matsuda T Kumai T Takakura Y
Full Access

Introduction and aims

Recently many implants for ankle arthroplasty have been developed around the world, and especially some mobile bearing, three-component implants have good results. Nevertheless, at our institution fixed two-component, semi-constrained alumina ceramic total ankle arthroplasty (TAA) with TNK Ankle had been performed since 1991 and led to improved outcomes. We report clinical results and in vivo kinematic analyses for TNK Ankle.

Method

Between 1991 and 2006, total ankle arthroplasties with TNK Ankle were performed with 102 patients (106 ankles) with osteoarthritis at our institution. There were 91 women and 11 men. The mean age was 69 years and mean follow-up was 5.4 years. These cases were evaluated clinically and radiographically. Besides in vivo kinematics, in TNK Ankle was analysed using 3D-2D model registration technique with fluoroscopic images. Between 2007 and 2008, prospectively ten TAA cases examined with fluoroscopy at postoperative one year.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 431 - 431
1 Apr 2004
Iwata H Ito H Hasegawa Y Ishiguro N Matsuda T Kitamura S Iyoda K Yabe Y Yamauchi K Kaneko H Maruno S
Full Access

Hydroxyapatite (HA) is a bioactive material with a high affinity for bone. Ti-6Al-4V is lightweight and less biotoxic. Using these materials, a cementless hip prosthesis has been clinically used, consisting mainly of a Ti femoral stem coated with plasma-sprayed biocompatible HA. However, this type of stem entails several disadvantages: HA is likely to decompose at the coating; long term HA coating layer bonding to Ti is unstable and optimal HA thickness is unfeasible. In many actual cases, debonding of HA coating layer from the Ti surface was found upon removal of stems.

To resolve these concerns, we started developing a new hip prosthesis using composite materials comprised of Ti-6Al-4V and HA containing bioinactive and highly stable glass in 1985. The cementless hip prosthesis, named HAPG-Profile, unites the bioactive stem surface with the surrounding bone via adhesive glass. In basic experiments, the glass-coated HAPG-Profile has been demonstrated to possess much higher bonding stability than the plasma-sprayed HA, with bone affinity and safety not compromised. On the basis of these results, we manufactured the HAPG-Profile jointly with DePuy International, UK, and initiated a clinical trial in January 1997 in the teaching Hospital, Nagoya University School of Medicine, and Tokyo Kosei Nenkin Hospital. A total of 63 patients were followed up for more than two year and evaluated according to the Japanese Orthopedic Association Score and Harris Hip Score (HHS) clinically, functionally and radiographically. The results of the two-year follow-up study indicated success of early fixation associated with favorable outcomes.