Today's aging society is seeing an increase of patients with rheumatoid arthritis and osteoarthritis, as well as an increase in joint replacement surgery. The artificial joints used in this surgery frequently uses ultra-high molecular weight polyethylene (UHMWPE) as a bearing material. However, UHMWPE wear particles are considered to be a major factor in long-term osteolysis, and implant loosening. Many researchers have reported that the volume and size of particles are critical factors in macrophage activation, with particles in the size range of 0.1 – 1.0 μm being the most biologically active. The micro slurry-jet erosion (MSE) apparatus was introduced to minimize the amount of wear, and increase the size of UHMWPE wear particles by texturing the surfaces of Co-Cr-Mo alloy implants. The MSE apparatus uses a slurry of alumina particles (WA#8000: average diameter 1.2 μm) mixed with water. The slurry and compressed air are mixed within an injection nozzle, which is then applied to the Co-Cr-Mo alloy at high speed to achieve a desired nano-textured surface. In this study, four Co-Cr-Mo alloy surface profiles were prepared. The MSE injection nozzle was fed 40.0 mm in alternating directions across each surface with an orthogonal step of 0.5 mm. The surface M-1 was processed with an injection nozzle feed rate of 1.0 mm/s, and obtained a surface roughness of 5.7 nm. M-2 was processed with a feed rate of 2.0 mm/s, and had a surface roughness of 2.3 nm. The M-4 surface used a 40.0 mm alternating directions surface feed, but with a 1.0 mm orthogonal step, and an injection nozzle feed rate of 0.5 mm/s. It obtained a surface roughness of 4.0 nm. The G-1 surface, with a roughness of 10.0 nm, was processed with the typical lapping method, which is used in conventional artificial joints [Fig. 1]. A pin-on-disk wear tester, capable of multidirectional motion, was used to assess which surface was the most appropriate for artificial joints. The UHMWPE pins were flat ended cylinders, 12.0 mm in diameter, and were placed on the disk with a contact pressure of 6.0 MPa. Tests were carried out in 25% (v/v) fetal calf serum with sodium azide to retard bacterial growth. A sliding speed of 12.1 mm/s, and a total sliding distance of 15.0 km were applied. The wear weight of the MSE textured surface M-1 was significantly lower than the wear weight of the conventional surface. Moreover, the percentages of various wear particle sizes obtained from MSE surface texturing was significantly different from those obtained from the traditional surface.