Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 128 - 128
1 Mar 2017
Royhman D Hallab N Jacobs J Mathew M
Full Access

Modern hip implants feature a modular design, whereby the individual components of the implant are assembled during the surgery. Increased reported failure rates associated with the utilization of modular junctions have raised many clinical concerns about the increased release of metal ions/debris leading to adverse local tissue reactions. Implant materials are subject to a myriad of mechanical motion and forces, and varying electrochemical conditions and pH changes from the surrounding environment. To date, no studies have attempted to model the collected data in order to predict the performance of the materials so that precautions can be taken before the problem reaches the critical stage. This study reports the effects of pH variation, displacement variation, and load variation on the mechanical and corrosion behavior of the hip implant modular junction system, tested with a custom-built fretting-corrosion apparatus. The main objective of this study is to combine the complete data set of the in-vitro experiments to create fretting-corrosion wear maps that can predict the dangerous domains of the hip implant modular system.

For each test, the flat portions of two CoCrMo pins were loaded perpendicularly against a Ti6Al4V Rod (Ti alloy) in a Flat-on-flat configuration in a simulated synovial fluid in order to simulate the modular hip implant system. A schematic diagram of contact conditions is presented in Figure 1. A sinusoidal displacement was applied onto the rod, which articulated against the CoCrMo alloy pins, at a frequency of 1Hz. The experiential data from the fretting-corrosion tests has been used to create fretting-corrosion maps. The variables incorporated into the maps include: total mass loss, electrochemical destabilization, pH variation, load variation, displacement variation, and visual examination of the wear features of the contact zone. Total mass loss has been estimated via measurement of the simulator fluid by ICP-MS technique. Electrochemical destabilization was evaluated by a single parameter (VDrop). The electrochemical destabilization of the tribosystem was evaluated by measuring the drop in potential, VDrop (V vs. SCE), resultant from the initiation of the fretting phase. The VDrop refers to the initial cathodic drop in potential in response to the initial onset of fretting motion.

The data from the in vitro fretting-corrosion experiments has been combined to create four fretting-corrosion maps (Figures 2A–3D). Partial slip wear features and mechanical behavior was observed at 25µm displacement. 25–150µm displacement amplitudes showed gross slip behavior. Anything larger than 150µm displayed wear features that were indistinguishable from sliding wear. In general, total mass loss and VDrop increased with increasing displacement. Samples that were tested at pH 6.0 or higher showed signs of material transfer and higher VDrop. Finally, there was a general decrease in VDropwith increased applied load and pH.

In general, the wears maps were able to offer some predictive validity, however, there were some discrepancies between visual observations and the observed damage parameters. It is possible that other parameters could offer better correlation. Future studies will be conducted to measure other parameters.

For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 94 - 94
1 Mar 2017
Pourzal R Hall D Rad E Urban R Jacobs J Mathew M
Full Access

Introduction

There are increasing reports of total hip replacement (THR) failure due to corrosion within modular taper junctions, and subsequent adverse local tissue reactions (ALTRs) to corrosion products. Modular junction corrosion is a multifactorial problem that depends on material, design, patient and surgical factors. However, the influence of alloy microstructure on corrosion has not been studied sufficiently. Especially for cast CoCrMo, there are concerns regarding microstructure variability with respect to grain size and hard-phase volume fraction. Therefore, it was the goal of this study to (1) identify different types of microstructures in contemporary implants, and (2) determine implications of alloy microstructure on the occurring corrosion modes.

Methods

Fifteen surgically retrieved femoral stems made from cast CoCrMo alloy were analyzed for this study. Damage on the taper surfaces was investigated by scanning electron microscopy (SEM) and damage was assessed with the Goldberg Score. The alloy microstructure was evaluated by standard metallographic techniques. Alloy samples were sectioned off the femoral stem, and microstructural features were visualized by chemical etching. Cyclic potentio-dynamic polarization tests were carried out with alloy samples from two implants with different commonly occurring types of microstructures. Both had a similar grain size, but type 1 had no hard-phases, where as type 2 exhibited hard-phases along the grain boundaries, as well as intra-granular hard-phase clusters. Tests were performed in bovine serum at 37°C with a saturate calomel reference electrode and a graphite counter electrode. In vitro generated corrosion damage was then compared to in vivo generated damage features on the taper surfaces of the corresponding implants.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 277 - 282
1 Feb 2015
Shetty RP Mathew M Smith J Morse LP Mehta JA Currie BJ

Little information is available about several important aspects of the treatment of melioidosis osteomyelitis and septic arthritis.

We undertook a retrospective review of 50 patients with these conditions in an attempt to determine the effect of location of the disease, type of surgical intervention and duration of antibiotic treatment on outcome, particularly complications and relapse.

We found that there was a 27.5% risk of osteomyelitis of the adjacent bone in patients with septic arthritis in the lower limb. Patients with septic arthritis and osteomyelitis of an adjacent bone were in hospital significantly longer (p = 0.001), needed more operations (p = 0.031) and had a significantly higher rate of complications and re-presentation (p = 0.048).

More than half the patients (61%), most particularly those with multifocal bone and joint involvement, and those with septic arthritis and osteomyelitis of an adjacent bone who were treated operatively, needed more visits to theatre.

Cite this article: Bone Joint J 2015;97-B:277–82.