Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 48 - 48
11 Apr 2023
Richter F Oesterreicher J Goeschl V Hanetseder D Hackl M Pultar M Redl H Grillari J Holnthoner W Marolt Presen D
Full Access

Recent studies suggested that both the soluble protein of the mesenchymal stromal cell (MSC) secretome, as well as the secreted extracellular vesicles (EVs) promote bone regeneration. However, there is limited knowledge of the changes in MSC secretome vesicular fraction during aging. We therefore aimed to characterize the release profiles and cargo of EVs from MSCs of different chronological ages.

Conditioned medium (CM) was collected from 13 bone marrow MSC strains (20-89 years) and from one MSC strain derived from human induced pluripotent stem cells (iPSCs). The EV-containing fraction was enriched with ultracentrifugation. The number of particles in the CM was evaluated by nanoparticle tracking analysis (NTA), and the number of EVs was evaluated by flow cytometry (FC) after staining with cell-mask-green and anti-CD81 antibody. EV cargo analysis was conducted using next-generation sequencing (NGS).

Our data confirmed the release of EVs from all MSC strains used in the study. There were no correlations between the number of particles and the number of EVs released in the CM, and between the number of EVs released and the strain age. Nevertheless, some of the lowest concentrations of EVs were found in the CM of strains over 70 years of age, which exhibited a low/absent chondrogenic and osteogenic differentiation potential. In contrast, iPSC-MSCs, which exhibited a high growth and three-lineage differentiation potential, released a similar amount of EVs as the best performing bone marrow MSC strain. NGS analysis identified several microRNAs that were significantly enriched in EVs of young MSC strains exhibiting low senescence, and those that were enriched in EVs of strains exhibiting high differentiation potentials. Gender had no influence on microRNA profiles in EVs or releasing MSCs.

Taken together, our data provides new insights into the properties of MSC vesicular secretome and its therapeutic potential during aging.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 45 - 45
11 Apr 2023
Hanetseder D Hruschka V Redl H Marolt Presen D
Full Access

Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human bone marrow stromal cells (hBMSCs).

ECM was engineered from hiPSC-derived mesenchymal-like progenitors (hiPSC-MPs), as well as young (<30 years) and aged (>70 years) hBMSCs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. Three hBMSCs of different ages were cultured on engineered ECMs. Growth and differentiation responses were compared to tissue culture plastic, as well as to collagen and fibronectin coated plates.

Decellularized ECMs contained collagens type I and IV, fibronectin, laminin and < 5% residual DNA, suggesting efficient cell elimination. Cultivation of young and aged hBMSCs on the hiPSC-ECM in osteogenic medium significantly increased hBMSC growth and markers of osteogenesis, including collagen deposition, alkaline phosphatase activity, bone sialoprotein expression and matrix mineralization compared to plastic controls and single protein substrates. In aged BMSCs, matrix mineralization was only detected in ECM cultures in osteogenic medium. Comparison of ECMs engineered from hiPSC-MPs and hBMSCs of different ages suggested similar structure, composition and potential to enhance osteogenic responses in aged BMSCs. Engineered ECM induced a higher osteogenic response compared to specific matrix components.

Our studies suggest that aged BMSCs osteogenic activity can be enhanced by culture on engineered ECM. hiPSCs represent a scalable cell source, and tissue engineering strategies employing engineered ECM materials could potentially enhance bone regeneration in elderly patients.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 71 - 71
1 Jul 2014
de Peppo G Marcos-Campos I Kahler D Alsalman D Shang L Vunjak-Novakovic G Marolt D
Full Access

Summary Statement

A biomimetic tissue engineering strategy involving culture on bone scaffolds in perfusion bioreactors allows the construction of stable, viable, patient-specific bone-like substitutes from human induced pluripotent stem cells.

Introduction

Tissue engineering of viable bone substitutes represents a promising therapeutic strategy to mitigate the burden of bone deficiencies. Human induced pluripotent stem cells (hiPSCs) have an excellent proliferation and differentiation capacity, and represent an unprecedented resource for engineering of autologous tissue grafts, as well as advanced tissue models for biological studies and drug discovery. A major challenge is to reproducibly expand, differentiate and organize hiPSCs into mature, stable tissue structures. Based on previous studies (1,2,3), we hypothesised that the culture conditions supporting bone tissue formation from adult human mesenchymal stem cells (hMSCs) and human embryonic stem cell (hESC)-derived mesenchymal progenitors could be translated to hiPSC-derived mesenchymal progenitors. Our objectives were to: 1. Derive and characterise mesenchymal progenitors from hiPSC lines. 2. Engineer bone substitutes from progenitor lines exhibiting osteogenic potential in an osteoconductive scaffold – perfusion bioreactor culture model. 3. Assess the molecular changes associated with the culture of hiPSC-progenitors in perfusion bioreactors, and evaluate the stability of engineered bone tissue substitutes in vivo.