Aseptic loosening is a major cause of revision surgeries and occurs when osteolysis is stimulated around the implant by pro-inflammatory cytokines including IL-1β. Production of active IL-1β in response to orthopedic wear particles depends on processing by the NLRP3 inflammasome which requires priming followed by activation. We found that pathogen associated molecular patterns (PAMPs) adherent to wear particles are necessary to prime the NLRP3 inflammasome. In contrast, in pre-primed macrophages, particles themselves are sufficient to activate the NLRP3 inflammasome and induce secretion of active IL-1β. Particles themselves also induce cell death, kinetically preceding the release of active IL-1β. Phagocytosis of particles is required to initiate both responses as the phagocytosis inhibitor cytochalasin blocks cell death and IL-1β release. Lysosome membrane destabilization is also critical as inhibition of lysosomal function with bafilomycin or chloroquine significantly abrogated the release of active IL-1β and cell death in response to wear particles. The pan-cathepsin inhibitors Ca-074-Me or K777 also inhibit cell death and IL-1β release indicating that cathepsin release from lysosomes is also a necessary step in the particle-induced response. Our results open the possibility of clinical intervention with lysosomal or cathepsin inhibitors to treat aseptic loosening as these drugs have better specificity and less
Peri-tendinous injection of local anaesthetic,
both alone and in combination with corticosteroids, is commonly performed
in the treatment of tendinopathies. Previous studies have shown
that local anaesthetics and corticosteroids are chondrotoxic, but
their effect on tenocytes remains unknown. We compared the effects
of lidocaine and ropivacaine, alone or combined with dexamethasone,
on the viability of cultured bovine tenocytes. Tenocytes were exposed
to ten different conditions: 1) normal saline; 2) 1% lidocaine;
3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone
(dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex;
and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery
period, the viability of the tenocytes was quantified using the
CellTiter-Glo viability assay and fluorescence-activated cell sorting
(FACS) for live/dead cell counts. A 30-minute exposure to lidocaine
alone was significantly toxic to the tenocytes in a dose-dependent
manner, but a 30-minute exposure to ropivacaine or dexamethasone
alone was not significantly toxic. Dexamethasone potentiated ropivacaine tenocyte toxicity at higher
doses of ropivacaine, but did not potentiate lidocaine tenocyte
toxicity. As seen in other cell types, lidocaine has a dose-dependent
toxicity to tenocytes but ropivacaine is not significantly toxic.
Although dexamethasone alone is not toxic, its combination with
0.5% ropivacaine significantly increased its toxicity to tenocytes.
These findings might be relevant to clinical practice and warrant
further investigation.