Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 23 - 23
1 Oct 2019
Meding JB Meding LK Meneghini RM Malinzak RA
Full Access

Introduction

Maintaining posterior stability in total knee arthroplasty (TKA) may be achieved by using a posterior stabilized TKA, retaining and balancing the posterior cruciate ligament (PCL) using a traditional cruciate-retaining design (CR), or by increasing the sagittal plane conformity of the tibial insert. In the latter case, stability is achieved by the addition of an anterior buildup on the tibial polyethylene creating the so-called “anterior stabilized” (AS) design. We hypothesized that using an AS tibial insert would provide similar function and survivorship as compared to using a more traditional CR bearing when the PCL is either recessed or balanced.

Methods

Between 2004 and 2016, 1,731 modular CR TKAs were implanted in 1,509 patients using the same CR TKA design. The diagnosis was osteoarthritis in 98%. 58% of patients were female. Average age of 64.9 years. Within this group, 868 TKAs (50.1%) had a standard CR tibial bearing (3-degree posterior slope and no posterior lip) implanted (CR-S). 480 TKAs (27.8%) had a lipped CR modular tibial bearing (2.5 mm elevated posterior lip) implanted (CR-L). Starting in 2013, 383 TKAs (22.1%) were implanted with an AS modular tibial bearing (9–11 mm anterior lip and a 5 mm posterior lip). If the PCL was considered non-functional or absent, an AS bearing was placed. If the PCL was considered functional, a standard bearing or lipped bearing was used. Clinical and radiographic analysis was performed according to the Knee Society (KS) grading system. The most recent clinical and radiographic evaluation was used for post-operative analysis. The average follow-up in the entire cohort of TKAs was 5.5 years (range 2 to 14.3 years). Kaplan-Meier analysis was used to determine prosthesis survivorship with failure defined as aseptic loosening of the prosthesis (with or without revision) or tibial insert exchange.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 122 - 129
1 Apr 2016
Small SR Rogge RD Malinzak RA Reyes EM Cook PL Farley KA Ritter MA

Objectives

Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone.

Methods

Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.