In patients with multiple trauma delayed fracture healing is often diagnosed, but the pathomechanisms are not well known yet. The purpose of the study is to evaluate the effect of a severe hemorrhagic shock on fracture healing in a murine model. 10 male C57BL/6N mice per group (Fx, TH, THFx, Sham) and point in time were used. The Fx-group received an osteotomy after implantation of a fixateur extern. The TH-group got a pressure controlled hemorrhagic shock with a mean arterial blood pressure of 35 mmHg over 90 minutes. Resuscitation with 4 times the shed blood volume of Ringer solution was performed. The THFx group got both. Sham-animals received the implantation of a catheter and a fixateur extern but no blood loss or osteotomy. After 1, 2, 3, 4 or 6 weeks the animals were sacrificed. For the biomechanics the bones were analyzed via X-ray, µCT and underwent a 3-point bending test. The nondecalcified histology based on slices of Technovit 9100. The signaling pathway was analyzed via RT2 Profiler™ PCR Array Mouse Osteoporosis, Western Blot and Quantikine ELISA for RankL and OPG. Statistical significance was set at Purpose
Methods