AO Spine Reference Centre & Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia Traumatic spinal cord injury (SCI) is a devastating condition with no curative therapy. Pro-inflammatory therapy has been suggested recently to try and reduce the inhibitory glial scar and promote neural regeneration and healing. The aim of this study is to investigate the potential of sustained delivery of angiogenic/pro-inflammatory growth factors to reduce the secondary degeneration after spinal cord injury. Adult male Wistar Kyoto rats (200-300g; 12-16weeks old) were subjected to cord hemisections via a T10 laminectomy. Animals were randomised to treatment or control groups after the spinal cord injury had been induced. Treatment consisted of implantation of a mini-osmotic pump capable of delivering 5 micrograms vascular endothelial growth factor (VEGF) and 5 micrograms platelet-derived growth factor (PDGF), via a catheter, to the site of the lesion, over 7 days(n=6). Control animals were subjected to either cord lesion only (n=6) or lesion plus mini-pump delivering PBS (phosphate-buffered saline) solution (n=6). Rats were sacrificed at one month and the spinal cords were harvested and examined by immunohistology, using anti-neurofilament-200 and anti-Glial Acidic Fibrillary Acidic Protein (GFAP) antibodies. RESULTS: Active treatment spinal cords showed a higher level with aboration of the axonal filament through the defect and more dense neurofilament-200 staining at the lesion site compared to both control groups. The treatment also showed the elevated presence of activated microglia in the lesion, whilst distal to the lesion the microglia and astrocytes retained an unreactive phenotype. Pro-inflammatory therapy in the rat spinal cord-injury model showed favourable histological findings after sustained delivery of PDGF and VEGF
MRI experiments were undertaken at 25.0 ± 0.1 °C on a Bruker Avance NMR spectrometer (Bruker Bio-Spin, Rheinstetten, Germany) using a 7.0T vertical bore magnet system, equipped with a 1.1 T m-1 (110 G cm-1) gradient set and 15 mm ‘birdcage’ RF resonator. Specimens for testing were immersed in physiological saline inside a 15 mm NMR. Both multi echo and diffusion weighted images were acquired with a recycle time TR = 2 s and 8 averages using a 0.7 mm slice thickness, a field of view (FOV) of ca. 15 × 15 mm and a 128 × 128 matrix. For multi echo experiments the echo time was 5 ms with 64 echoes and for DT imaging a diffusion gradient duration δ = 2 ms and diffusion delay Δ = 12 ms. The diffusion tensor was calculated from the seven requisite diffusion-weighted images using in-house Matlab® code (The Mathworks, Natick, MA) written for the purpose.
In a single-blind, Phase I clinical trial, we aimed to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the spinal cord of three humans with complete spinal cord injury. This paper describes the trial and the surgical procedures and presents twelve month safety data.
Olfactory ensheathing cells were harvested from each subject in the surgery group, grown and purified All patients are tested on enrollment and then at regular intervals up to three years by a group of assessors who are blinded to the treatment or control group status. These assessments include physical, radiological, neurophysiological and psychosocial parameters.
This is the first reported trial of OEC’s in human spinal cord injury. Twelve-month data in a small cohort shows that there is no evidence of adverse events that would preclude completion of the current trial and the development of efficacy trials.