Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients.
To compare preoperative and postoperative Health Related Quality of Life (HRQoL) scores in operated Adolescent Idiopathic Scoliosis (AIS) patients with and without concomitant isthmic spondylolisthesis. A retrospective study of a prospective cohort of 464 individuals undergoing AIS surgery between 2008 and 2018 was performed. All patients undergoing surgery for AIS with a minimum 2-year follow-up were included. We excluded patients with prior or concomitant surgery for spondylolisthesis. HRQoL scores were measured using the SRS-22 questionnaire. Comparisons were performed between AIS patients with vs. without concomitant spondylolisthesis treated non-surgically. AIS surgery was performed for 36 patients (15.2 ±2.5 y.o) with concomitant isthmic spondylolisthesis, and 428 patients (15.5 ±2.4 y.o) without concomitant spondylolisthesis. The two groups were similar in terms of age, sex, preoperative and postoperative Cobb angles. Preoperative and postoperative HRQoL scores were similar between the two groups. HRQoL improved significantly for all domains in both groups, except for pain in patients with spondylolisthesis. There was no need for surgical treatment of the spondylolisthesis and no slip progression during the follow-up duration after AIS surgery. Patients undergoing surgical treatment of AIS with non-surgical management of a concomitant isthmic spondylolisthesis can expect improvement in HRQoL scores, similar to that observed in patients without concomitant spondylolisthesis.
Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients.
Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients.
There is a significant positive association between hours of brace wear and rate of success in the treatment of Adolescent Idiopathic Scoliosis (AIS). The abandon rate reported in the literature averages 18%. In a recent randomized trial conducted at our center; the abandon rate was 4%. We aim to document the abandon rate towards brace treatment during the COVID-19 pandemic and its impact on AIS progression. We reviewed a database of AIS patients recruited between March and September 2020. Inclusion criteria were patients with AIS under brace treatment according to SRS criteria. The patients were divided in 2 cohorts: those with a self-reported good adherence to treatment and those who voluntarily abandoned treatment during follow-up. Patients with irregular adherence were excluded. Data analysis included age, gender, Risser stage, type of brace, Cobb angles at first visit and last follow-up (mean 11 months) and % of progression. Unpaired student tests were used for comparison. 154 patients met inclusion criteria. 20 patients were excluded due to irregular adherence. 89 patients (age: 12.1 y.o. ±1.4) reported good adherence to treatment, while 45 patients (age: 12.6 y.o. ±1.5) abandoned treatment, an abandon rate of 29%. The cohort of compliant patients started treatment with a mean main thoracic (MT) curve of 26° and finished with 27°. The mean difference between measurements was +0.65°±7.5; mean progression rate was −4.6%. However, patients who abandoned treatment started with a mean MT curve of 28° and finished with 33°, with a mean increase of +5°±8 and a mean progression rate of −11%. The differences between the 2 cohorts were statistically significant (p=0.002). Five (5) patients from the abandon group were offered for surgery because of curve progression. The abandon rate of brace treatment in AIS significantly increased during the first wave of COVID-19 pandemic. Patients who voluntarily discontinued treatment had significant increases in curve progression and surgical indication rates.
Proximal junctional kyphosis (PJK) is defined as adjacent segment kyphosis >10° between the upper instrumented vertebrae and the vertebrae 2 levels above following scoliosis surgery. There are few studies investigating the predictors and clinical sequelae involved with this relatively common complication. Our purpose was to determine the radiographic predictors of post-op PJK and to examine the association between PJK and pain/HRQOL following surgery for AIS. The Post-Operative Recovery after Scoliosis Correction: Home Experience (PORSCHE) study was a prospective multicenter cohort of AIS patients undergoing spinal fusion surgery. Pre-op and minimum 2 year f/u scoliosis and sagittal spinopelvic parameters (thoracic kyphosis–TK, lordosis–LL, pelvic tilt-PT, sacral slope-SS, pelvic incidence-PI) were measured and compared to numeric rating scale for pain (NRS) score, SRS-30 HRQOL and to the presence or absence of PJK (proximal junctional angle >100). Continuous and categorical variables were assessed using logistic regression and binomial variables were compared to binomial outcomes using chi-square. 163 (137 females) patients from 8 Canadian centers met inclusion criteria. At final f/u, PJK was present in 27 patients (17%). Pre-op means for PJK vs No PJK: Age 14.1 vs 14.7yr; females 85 vs 86%; scoliosis 57±22 vs 62±15deg; TK 28±18 vs 19±16deg ∗, LL 62±11 vs 60±12deg, PT 8±12 vs 10±10deg, SS 39±8 vs 41±9deg, PI 47±14 vs 52±13deg, SVA −9±30 vs −7±31mm. Final f/u for PJK vs No PJK: Scoliosis 20±11 vs 18±8deg, final TK 26±12 vs 19±10deg∗, LL 60±11 vs 57±12deg, PT 9±12 vs 12±13deg, SS 39±9 vs 41±9deg, PI 48±17 vs 52±14deg, SVA −23±26 vs −9±32mm∗. Significant findings: Pre-op kyphosis >40deg has an odds ratio (OR) of 4.41 (1.50–12.92) for developing PJK∗. The presence of PJK was not associated with any significant differences in NRS or SRS-30. ∗denotes p<0.05. This prospective multicenter cohort of AIS patients demonstrated a 17% risk of developing PJK. Pre-op thoracic kyphosis >40deg was associated with the development of PJK; however, the presence of PJK was not associated with increased pain or decreased HRQOL.
Referral patterns in spine clinic of young patients with suspected scoliosis is suboptimal with 19% of late referrals and 42% of inappropriate referrals. Patients' triage and prioritisation in spine clinic is a strategy to ensure that health care allocation is done according to the level of health needs, favoring effective management and efficient use of health care resources use. The objective of the study is to elaborate a model for triage and prioritisation of young patients in spine clinic based on expert consensus and literature on best practices. This projects was structured in three parts: 1)We documented best evidence. We conducted a review of empirical studies evaluating triage and prioritisation initiatives in order to identify key components for intervention success. 2)We elaborate a model of health care delivery with the professionals of a local paediatric spine clinic. In this model, the triage and prioritisation algorithm was developed from list of potential factors (demographics, signs and perceived symptoms, provisional diagnoses and known co-morbidities, results of preliminary physical examination and radiological findings) that was submitted to five paediatric orthopaedic surgeons for rating according to their potential relevance to orient prioritisation decisions. 3) We compared the professionals' model of health care delivery to the literature synthesis in order to propose the best model. Seven key components of triage and prioritisation systems were identified: centralised review of referral requests, list of consensual objectives criteria for triage, fast track evaluation of urgent cases, selection of cases for management at point of triage, cases prioritisation to main consultant, multidisciplinary evaluation and alternatives pathways. The consensual decision algorithm confirmed that cases who should be seen in priority are immature patients presenting with a significant trunk deformity. In addition, presence of persisting neurological symptoms, severe incapacitating pain or night pain, as well as abnormal scan or MRI findings were considered as urgent/PI priority. Cases characteristics for evaluation by nurse practitioners as well as alternative pathways of management were defined. Acceptability, compatibility, clinical relevance and discriminant capacity of the new model of health care delivery were satisfactorily demonstrated. Consensus was easily reached between the five respondents on factors supporting decisions to prioritise patients in spine clinic for suspected spinal deformity. Refinements to the initially proposed model according the identified key features from the literature, led to a final model of health care delivery that is evidence-base, feasible and coherent with the local context. Future implementation of this model should facilitate timely and appropriate health care delivery and best use of health care resources according to patients' needs.