Distal arthrogryposis (DA) is a collection of rare developmental disorders characterized by congenital joint contractures. Most arthrogryposis mutations are in muscle- and joint-related genes, and the anatomical defects originate cell-autonomously within the musculoskeletal tissues. However, gain-of-function (GOF) mutations in PIEZO2, a principal mechanosensor in somatosensation, cause DA subtype 5 via unknown mechanisms. We show that expression of a GOF PIEZO2 mutation in proprioceptive sensory neurons mainly innervating muscle spindles and tendons is sufficient to induce DA5-like phenotypes in mice. Overactive PIEZO2 causes anatomical defects via increased activity within the peripheral nervous system during postnatal development. Surprisingly, overactive PIEZO2 is likely to cause joint abnormalities via increased exocytosis from sensory neuron endings without involving motor circuitry. This reveals a role for somatosensory neurons: excessive mechanosensation within these neurons disrupts musculoskeletal development. We also present proof-of-concept that Botox injection or dietary treatment can counteract the effect of overactive PIEZO2 function to evade DA-like phenotypes in mice when applied during a developmental critical period. These approaches might have clinical applications. Beyond this, our findings call attention to the importance of considering sensory mechanotransduction when diagnosing and treating other musculoskeletal disorders.
With information about a patient's bone mechanical properties orthopaedic operations could be optimised to reduce intra- and post-operative complications. However, there is currently no reliable method of measuring a patient's bone mechanical properties in vivo. We have previously investigated microindentation, using a 1.5mm diameter spherical indenter tip, and found no correlation between these measurements and compression testing measurements. We hypothesised that by using a larger diameter indenter tip we would closer match bone millimetre-scale mechanical properties. 20 bone samples were taken from 20 patients undergoing hip replacement surgery. The samples were machined from the femoral neck calcar cortical bone into 6×3×3mm parallelepiped specimens, aligned with the osteons along the long axis. The samples were micro-computed tomography (CT) scanned to calculate porosity. Microindentation was performed using a 6mm diameter, sapphire, spherical indenter tip. 12 indentations were performed in a grid and the reduced moduli were calculated using the Oliver-Pharr method. Compression testing was then performed to failure and the apparent elastic modulus was calculated for each sample. A moderate correlation was found between the indentation reduced moduli and compression testing elastic moduli (r=0.52, r2=0.275, p=0.018). In addition, a moderate correlation was found between the indentation reduced moduli and CT-measured porosity (r=0.5, r2=0.251, p=0.025) and a strong correlation was found between compression testing moduli and porosity (r=0.75, r2=0.568, p<0.001). Using large-tip spherical microindentation, indentation reduced moduli correlated significantly with compression testing apparent elastic moduli in these 20 cortical bone specimens. Microindentation using a large, spherical indenter tip may predict the mechanical properties of bone at the millimetre length scale and shows promise as a potential future clinical decision aid in surgery.
Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.Objectives
Methods
Osteoporosis is a global health issue with 200 million people suffering worldwide and it is a common condition in the elderly. Bisphosphonates including alendronate and risendronate are considered as the first line treatment for osteoporosis. However, there is increasing evidence that bisphosphonate (BP) therapy is associated with atypical fractures. Animal studies have reported a dose-dependent association between the duration of BP therapy and the accumulation of micro-damage. We tested the hypothesis that hip fracture patients treated with BP exhibited greater micro-damage density than untreated fracture and ‘healthy’ aging non-fracture controls. Trabecular bone cores from patients treated with BP were compared with patients who had not received any treatment for bone metabolic disease (ethics reference: R13004). Non-fractured cadaveric femora from individuals with no history of bone metabolic disease were used as controls. Cores were imaged in high spatial resolution (∼1.3µm) using Synchrotron X-ray tomography (Diamond Light Source Ltd.) A novel classification system was devised to characterise features of micro-damage in the Synchrotron images: micro-cracks, diffuse damage and perforations. Synchrotron micro-CT stacks were visualised and analysed using ImageJ, Avizo and VGStudio MAX. Our findings show that the BP group had the highest micro-damage density across all groups. The BP group (7.7/mm3) also exhibited greater micro-crack density than the fracture (4.3/mm3) and non-fracture (4.1/mm3) controls. Furthermore, the BP group (1.9/mm3) demonstrated increased diffuse damage when compared to the fracture (0.3/mm3) and non-fracture (0.8/mm3) controls. In contrast, the BP group (1.9mm3) had fewer perforations than fracture (3.0/mm3) and non-fracture controls (3.9/mm3). BP inhibits bone remodelling, thereby reducing the number of perforated trabeculae, but over-suppression leads to micro-damage accumulation. Accumulated damage could weaken the trabecular bone in the femoral head and neck, increasing the risk of a fracture during a trip or fall.
The increase in revision joint replacement surgery and fractures of bone around orthopaedic implants may be partly addressed by keeping bone healthy around orthopaedic implants by inserting implants with mechanical properties closer to the patient's bone properties. We do not currently have an accurate way of calculating a patient's bone mechanical properties. We are therefore investigating whether microindentation can accurately calculate bone stiffness. We received ethical approval to retrieve femoral heads and necks from patients undergoing hip replacement surgery for research. Cortical bone from the medial calcar region of the femoral neck was cut into 3×3×6mm cuboid specimens. Micro-indentation testing was performed in the direction of loading of the bone using a MicroMaterials indenter. The samples were kept hydrated and were not fixed or polished. From the unloading curve after indentation, the elastic modulus was calculated, using the Oliver- Pharr method. To assess which microindentation machine settings most precisely calculate the elastic modulus we varied the loading and unloading rates, load and indenter tip shape. The most precise results were obtained by using a spherical indenter tip (rather than Berkovich tip), high load (10N), a loading rate of 100 mN/s and unloading rate of 300 mN/s with a pause of 60 seconds at maximum load and multiple load cycles with constant loads. Using these settings the mean elastic modulus over 12 cycles of testing was 13.0 GPa (+/- 2.47). By using a spherical indenter tip and fast unloading it was possible to get precise apparent modulus values. By unloading as fast as possible the effects of bone viscoelastic properties are minimised. By using a spherical indenter tip, plastic deformation at the tip is minimised (compared to the Berkovich tip). We are performing further standard compression tests on the samples to verify the accuracy of the indentation tests.