Revision hip arthroplasty is a technically challenging operation as proximal bony deficits preclude the use of standard implants. Longer distally fixing stems are therefore required to achieve primary stability. This work aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) to that of a conical fluted stem (Restoration®, Stryker). It is hypothesized that the taper will provide improved rotational stability under cyclical loading.Introduction
Aims
Patients undergoing limb reconstruction with the Taylor Spatial Frame (TSF) often perceive that their frame is loose due to the rattle they hear when mobilising. Our aim was to determine how much and where this movement is in the various frame/bone constructs currently on the market. Using standard tibial saw bones three frames (TSF, Ilizarov and Hexapod) were made in an identical fashion. Constructs were cyclically loaded 4 times to 200 N in tension and compression using the Instron MTS. This was repeated three times. A seventh strut was also placed in the TSF construct and the tests repeated. Bones were then removed and the tests repeated for the frames alone.Introduction
Method