Platelet-derived growth factor-BB (PDGF-BB) is a well characterized wound healing protein known to be chemotactic and mitogenic for cells of mesenchymal origin, including osteoblasts and chondrocytes. Biocompatible scaffolds, combined with growth factors such as PDGF-BB, have potential to stimulate regeneration and repair of osseous and cartilaginous tissues. The purpose of this study was to determine the efficacy and safety of recombinant human PDGF-BB (rhPDGF-BB) combined with a collagen implant to augment healing of osteochondral defects. A single osteochondral defect (8mm x 8mm) was created in the medial femoral condyle of 32 adult goats. Collagen implants(8.5mm x 8mm) hydrated with four doses of rhPDGF-BB (0g, 15g, 75g, 500g) were press-fit into the defect. Defects in four animals were left untreated. All goats were sacrificed 12 weeks postoperatively. Macroscopic evaluation and quantitative CT analyses were performed. Histologic sections were stained with Safranin O/Fast Green and assessed with a modified ODriscoll scoring scale for cartilage and bone repair. Significance was determined by One-Way ANOVA or nonparametric Kruskal-Wallis.Purpose
Method
Porous collagen-glycosaminoglycan (Col/GAG) scaffolds have previously been used clinically as regeneration templates for peripheral nerves and skin[1]. For defects involving even minimal load-bearing applications however, these scaffolds do not possess the required stiffness. Calcium phosphates (CaPs) are often used as bone-graft substitutes due to their biocompatibility and direct bone-bonding ability. While CaPs have sufficient stiffness for bone-defect applications, unlike Col/GAG they lack elasticity and are very brittle. Combining these two materials produces a composite with enhanced material properties and chemical similarity to natural bone. The addition of CaP nanocrystallites into the Col/GAG matrix produces a 3-dimensional structure that maintains its structural integrity even when wet. In this study, the in vivo performance of mineralised Col/GAG composites was evaluated by implantation into a six-week ovine bone-defect model. Four different materials were implanted; Col/GAG alone, Col/GAG with octacalcium phosphate, Col/GAG with hydroxyapatite and Col/GAG with brushite. Implants with a diameter of 9mm and length of 9mm, were placed bilaterally into the distal femoral condyle of the hind legs of thirteen sheep. This site was selected due to the large volume of load-bearing cancellous bone. Cancellous autograft was harvested from the tibial tuberosity and placed in the defect sites of two sheep as a positive control. All animals were sacrificed after 6 weeks and tissue containing the implants was prepared for histological evaluation. Image analysis of Von Kossa stained sections showed that all mineralised Col/GAG implants had significantly more bone in the implant site than unmineralised Col/GAG but were not significantly different between CaPs. Interestingly, new bone formation often followed the structure of the porous material struts which acted as a template. The defect containing the autograft contained the greatest amount of new bone. The inclusion of mineral substantially improves the osteoconductivity of Col/GAG. No significant difference between the different calcium phosphates was seen. Whilst these materials did not stimulate bone formation to the same extent as autograft, many bone graft procedures are carried out with allograft which performs less favourably.Conclusions
The purpose of this study was to investigate whether combining PRP or concentrated bone marrow aspirate (CBMA) with a biphasic collagen/glycosaminoglycan (CG) scaffold would improve the outcome of the treatment of full thickness osteochondral defects in sheep. Osteochondral defects (5.8×6mm) were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of the stifle joints of 24 sheep. Defects were either left empty or filled with a 6×6mm CG scaffold, either on its own or in combination with PRP or CBMA (n=6). At 6 months the sheep were euthanised, and the repair tissue subjected to mechanical testing, gross morphological analysis, semi quantitative histological scoring and immunohistochemical staining including types I, II and VI collagen.Introduction
Materials and Methods
The aim of this study was to show the efficacy of Chondromimetic in repairing a surgically created osteochondral defect in a caprine model.