Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 20 - 20
1 Jul 2020
Ge S Barimani B Epure L Aoude A Luo L Volesky M Chaytor RE
Full Access

Recent innovations in total ankle replacement (TAR) have led to improvements in implant survivorship, accuracy of component positioning and sizing, and patient outcomes. CT-generated pre-operative plans and cutting guides show promising results in terms of placement enhancement and reproducibility in clinical studies. The purpose of this study was to determine the accuracy of 1) implant sizes used and 2) alignment corrections obtained intraoperatively using the cutting guides provided, compared to what was predicted in the CT generated pre-operative plans.

This is a retrospective study looking at 36 patients who underwent total ankle arthroplasty using a CT generated pre-operative planning system between July 2015 and December 2017. Personalized pre-operative planning data was obtained from the implant company. Two evaluators took measurements of the angle corrected using pre- and post-operative weight bearing ankle AP X-rays. All patients had a minimum three-month follow-up with weightbearing postoperative radiographs. The actual correction calculated from the radiographic assessment was compared with the predicted angles obtained from pre-operative plans. The predicted and predicted alternative component sizes and actual sizes used were also compared. If either a predicted or predicted alternative size was implanted, we considered it to be accurate.

Average age for all patients was 64 years (range 40–83), with a body mass index of 28.2 ± 5.6. All surgeries were performed by two foot and ankle surgeons. The average total surgical time was 110 ± 23 minutes. Pre-operative alignment ranged from 36.7 degrees valgus to 20 degrees varus. Average predicted coronal alignment correction was 0.8 degrees varus ± 9.3 degrees (range, 18.2 degrees valgus to 29 degrees varus) and average correction obtained was 2.1 degrees valgus ± 11.1 degrees. Average post-op alignment was consistently within 5 degrees of neutral. There were no significant differences between the predicted alignments and the postoperative weightbearing alignments. The predicted tibia implant size was accurate in all cases. The predicted sizes were less accurate for talar implants and predicted the actual talar implant size used in 66% of cases. In all cases of predicted talar size mismatch, surgical plans predicted 1 implant size larger than used.

Preliminary analyses of our data is comparable to previous studies looking at similar outcomes. However, our study had higher pre-operative deformities. Despite that, post-op alignments were consistently within 5 degress of neutral with no significant difference between the predicted and actual corrections. Tibial implant sizes are highly accurate while talar implant sizes had a trend of being one size smaller than predicted. Moreover, this effect seems to be more pronounced in the earlier cases likely reflective of increasing surgeon comfort with the implant with each subsequent case. These results confirm that pre-operative cutting guides are indeed helpful in intra-operative implant selection and positioning, however, there is still some room for innovation.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 67 - 67
1 Mar 2008
Luo L Petit A Zukor D Huk O Antoniou J Mwale F
Full Access

The in situ increased production of matrix metalloproteinases (MMPs) has been associated with the development of periprosthetic osteolysis. The aim of the study was to compare the effect of Co2+ and Cr3+ ions on macrophages matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of MMP (TIMP-1) expression. Using reverse transcription-polymerase chain reaction (RT-PCR), we showed that both Co2+ and Cr3+ ions induce the expression of MMP-1 and TIMP-1 in a dose-dependent manner. Since MMP-1 and TIMP-1 participate in the extracellular matrix degradation and tissue remodeling, our results suggest that the modulation of MMP-1 and TIMP-1 may contribute to the development of periprosthetic osteolysis.

The in situ increased production of matrix metalloproteinases (MMPs) has been associated with the development of periprosthetic osteolysis. Aseptic loosening due to periprosthetic osteolysis is the major cause of total hip arthroplasty failure. Because of their potential for improved wear performance, there has been a revived interest in metal-metal bearings, made of cobalt-chromium-molybdenum alloys. However, metal particle and ion toxicity remains a major cause for concern.

The aim of the study was to determine the effects of Co2+ and Cr3+ ions on the expression of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1), two proteins participating in the extracellular matrix degradation and tissue remodeling.

Human U937 macrophages were incubated with Co2+ and Cr3+ ions. The expression of MMP-1 and TIMP-1 mRNAs was measured by reverse transcription-polymerase chain reaction (RT-PCR) and calculated as the ratio of the house keeping gene GAPDH expression.

Results show that both Co2+ and Cr3+ ions induced in a dose-dependent manner the expression of PCR products (mRNAs) of MMP-1 (135 bp) and TIMP-1 (328 bp). Co2+ ions were more effective in inducing MMP-1 and TIMP-1 expression than Cr3+ ions. The induction of MMP-1 and TIMP-1 paralleled the induction of TNF-α mRNA expression.

Our results demonstrate that the expression of MMP-1 and TIMP-1 were up regulated by incubating macrophages with Co2+ and Cr3+ ions, suggesting that metal ions contribute to tissue damage in the periprosthetic environment and that variations in MMP-1 and TIMP-1 expression may contribute to periprosthetic osteolysis.