In order to effectively utilize mechanical signals in the clinic as a non-drug-based intervention to improve cartilage defect regeneration after surgical treatment, it is essential to identify crucial components of the cellular response that are typical to the anabolic process. The mechanisms behind the effect of mechanical stimulation are, however, not fully understood and the signaling pathways involved in the anabolic response of chondrocytes to mechano-transduction are not well described. Therefore, a genome-wide identification of mechano-regulated genes and candidate pathways in human chondrocytes subjected to a single anabolic loading episode was performed in this study and time evolution and re-inducibility of the response was characterized. Osteochondral constructs consisting of a chondrocyte-seeded collagen-scaffold connected to β-tricalcium-phosphate were pre-cultured for 35 days and subjected to dynamic compression (25% strain, 1 Hz, 9×10 minutes over 3h) before microarray-profiling was performed. Proteoglycan synthesis was determined by 35S-sulfate-incorporation over 24 hours. Protein alterations were determined by Western blotting.Objective
Design