Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 72 - 72
1 Dec 2022
Kendal J Fruson L Litowski M Sridharan S James M Purnell J Wong M Ludwig T Lukenchuk J Benavides B You D Flanagan T Abbott A Hewison C Davison E Heard B Morrison L Moore J Woods L Rizos J Collings L Rondeau K Schneider P
Full Access

Distal radius fractures (DRFs) are common injuries that represent 17% of all adult upper extremity fractures. Some fractures deemed appropriate for nonsurgical management following closed reduction and casting exhibit delayed secondary displacement (greater than two weeks from injury) and require late surgical intervention. This can lead to delayed rehabilitation and functional outcomes. This study aimed to determine which demographic and radiographic features can be used to predict delayed fracture displacement.

This is a multicentre retrospective case-control study using radiographs extracted from our Analytics Data Integration, Measurement and Reporting (DIMR) database, using diagnostic and therapeutic codes. Skeletally mature patients aged 18 years of age or older with an isolated DRF treated with surgical intervention between two and four weeks from initial injury, with two or more follow-up visits prior to surgical intervention, were included. Exclusion criteria were patients with multiple injuries, surgical treatment with fewer than two clinical assessments prior to surgical treatment, or surgical treatment within two weeks of injury. The proportion of patients with delayed fracture displacement requiring surgical treatment will be reported as a percentage of all identified DRFs within the study period. A multivariable conditional logistic regression analysis was used to assess case-control comparisons, in order to determine the parameters that are mostly likely to predict delayed fracture displacement leading to surgical management. Intra- and inter-rater reliability for each radiographic parameter will also be calculated.

A total of 84 age- and sex-matched pairs were identified (n=168) over a 5-year period, with 87% being female and a mean age of 48.9 (SD=14.5) years. Variables assessed in the model included pre-reduction and post-reduction radial height, radial inclination, radial tilt, volar cortical displacement, injury classification, intra-articular step or gap, ulnar variance, radiocarpal alignment, and cast index, as well as the difference between pre- and post-reduction parameters. Decreased pre-reduction radial inclination (Odds Ratio [OR] = 0.54; Confidence Interval [CI] = 0.43 – 0.64) and increased pre-reduction volar cortical displacement (OR = 1.31; CI = 1.10 – 1.60) were significant predictors of delayed fracture displacement beyond a minimum of 2-week follow-up. Similarly, an increased difference between pre-reduction and immediate post reduction radial height (OR = 1.67; CI = 1.31 – 2.18) and ulnar variance (OR = 1.48; CI = 1.24 – 1.81) were also significant predictors of delayed fracture displacement.

Cast immobilization is not without risks and delayed surgical treatment can result in a prolong recovery. Therefore, if reliable and reproducible radiographic parameters can be identified that predict delayed fracture displacement, this information will aid in earlier identification of patients with DRFs at risk of late displacement. This could lead to earlier, appropriate surgical management, rehabilitation, and return to work and function.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 89 - 89
1 Aug 2020
Bourget-Murray J Kendal J Schneider P Montgomery S Kooner S Kubik J Meldrum A Kwong C Gusnowski E Thomas K Fruson L Litowski M Sridharan S You D Purnell J James M Wong M Ludwig T Abbott A Lukenchuk J Benavides B Morrison L
Full Access

Advances in orthopaedic surgery have led to minimally invasive techniques to decrease patient morbidity by minimizing surgical exposure, but also limits direct visualization. This has led to the increased use of intraoperative fluoroscopy for fracture management. Unfortunately, these procedures require the operating surgeon to stay in close proximity to the patient, thus being exposed to radiation scatter. The current National Council on Radiation Protection recommends no more than 50 mSv of radiation exposure to avoid ill-effects. Risks associated with radiation exposure include cataracts, skin, breast and thyroid cancer, and leukemia. Despite radiation protection measures, there is overwhelming evidence of radiation-related diseases in orthopaedic surgeons. The risk of developing cancer (e.g. thyroid carcinoma and breast cancer) is approximately eight times higher than in unexposed workers. Despite this knowledge, there is a paucity of evidence on radiation exposure in orthopaedic surgery residents, therefore the goal of this study is to quantify radiation exposure in orthopaedic surgery residents.

We hypothesize that orthopaedic surgery residents are exposed to a significant amount of radiation throughout their training. We specifically aim to: 1) quantify the amount of radiation exposure throughout a Canadian orthopaedic residency training program and 2) determine the variability in resident radiation exposure by rotation assignment and year of training.

This ongoing prospective cohort study includes all local orthopaedic surgery residents who meet eligibility criteria. Inclusion criteria: 1) adult residents in an orthopaedic surgery residency program. Exclusion criteria: 1) female residents who are pregnant, and 2) residents in a non-surgical year (i.e. leave of absence, research, Masters/PhD). After completion of informed consent, each eligible resident will wear a dosimeter to measure radiation exposure in a standardized fashion. Dosimeters will be worn on standardized lanyards underneath lead protection in their left chest pocket during all surgeries that require radiation protection. Control dosimeters will be worn on the outside of each resident's scrub cap for comparison. Dosimeter readings will then be reported on a monthly and rotational basis. All data will be collected on a pre-developed case report form. All data will be de-identified and stored on a secure electronic database (REDCap). In addition to monthly and rotational dosimeter readings, residents will also report sex, height, level of training, parental status, and age for secondary subgroup analyses. Residents will also report if they have personalized lead or other protective equipment, including lead glasses. Resident compliance with dosimeter use will be measured by self report of >80% use on operative days. Interim analysis will be performed at the 6-month time point and data collection will conclude at the 1 year time point.

Data collection began in July 2018 and interim 6-month results will be available for presentation at the CORA annual meeting in June 2019.

This is the first prospective study quantifying radiation exposure in Canadian orthopaedic residents and the results will provide valuable information for all Canadian orthopaedic training programs.