header advert
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 81 - 81
1 Apr 2019
Bitter T Marra M Khan I Marriott T Lovelady E Verdonschot N Janssen D
Full Access

Introduction

Fretting corrosion at the taper interface of modular connections can be studied using Finite Element (FE) analyses. However, the loading conditions in FE studies are often simplified, or based on generic activity patterns. Using musculoskeletal modeling, subject-specific muscle and joint forces can be calculated, which can then be applied to a FE model for wear predictions. The objective of the current study was to investigate the effect of incorporating more detailed activity patterns on fretting simulations of modular connections.

Methods

Using a six-camera motion capture system, synchronized force plates, and 45 optical markers placed on 6 different subjects, data was recorded for three different activities: walking at a comfortable speed, chair rise, and stair climbing.

Musculoskeletal models, using the Twente Lower Extremity Model 2.0 implemented in the AnyBody modeling System™ (AnyBody Technology A/S, Aalborg, Denmark; figure1), were used to determine the hip joint forces. Hip forces for the subject with the lowest and highest peak force, as well as averaged hip forces were then applied to an FE model of a modular taper connection (Biomet Type-1 taper with a Ti6Al4V Magnum +9 mm adaptor; Figure 2). During the FE simulations, the taper geometry was updated iteratively to account for material removal due to wear. The wear depth was calculated based on Archard's Law, using contact pressures, micromotions, and a wear factor, which was determined from accelerated fretting experiments.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 14 - 14
1 Apr 2018
Bitter T Khan I Marriott T Lovelady E Verdonschot N Janssen D
Full Access

Introduction

Fretting corrosion of the modular taper junction in total hip arthroplasty has been studied in several finite element (FE) studies. Manufacturing tolerances can result in a mismatch between the femoral head and stem, which can influence the taper mechanics leading to possibly more wear. Using FE models the effect of these manufacturing tolerances on the amount of volumetric wear can be studied. The removal of material in the FE model was validated against experiments simulating the clinical fretting wear process, subsequently the mismatch and assembly force were varied to study the effect on the volumetric wear.

Methods

An FE model was developed in which the geometry can be updated to account for material removal due to wear. In this model the geometry was updated based on Archard's Law, using contact pressures, micromotions and a wear factor, which was determined based on accelerated fretting experiments. The linear wear was calculated using H=k*p*S. Where H is the linear wear depth in mm, k is a wear factor (mm3/Nmm), p is the contact pressure (MPa) and S is the sliding distance (mm). 10 million cycles were simulated using 50 virtual steps. Using this scaling and the measured volumetric wear from the experiments a wear factor of 2.7*10−5 was applied.

Based on general manufacturing tolerances the resulting mismatch in taper angles were determined to be ± 1.26°. Using this mismatch a tip fit (figure 1a) and base fit (Figure 1b) model were created. In combination with a perfect fit, meaning no mismatch, and two different assembly forces of 4 kN and 15 kN, 6 different situations were studied.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 46 - 46
1 Feb 2017
Bitter T Janssen D Schreurs B Marriott T Lovelady E Khan I Verdonschot N
Full Access

Introduction

Fretting corrosion of the modular taper junction in total hip arthroplasty has been studied in several finite element (FE) investigations. In FE analyses, different parameters can be varied to study micromotions and contact pressures at the taper interface. However, to truly study taper wear, the simulation of micromotions and contact pressures in non-adaptive FE models is insufficient, as over time these can change due to interfacial changes caused by the wear process.

In this study we developed an FE approach in which material removal during the wear process was simulated by adaptations to the taper geometry. The removal of material was validated against experiments simulating the clinical fretting wear process.

Method

Experimental test: An accelerated fretting screening test was developed that consistently reproduced fretting wear features observed in retrievals. Biomet Type-1 (4°) tapers and +9 mm offset adaptors were assembled with a 4 kN force (N=3). A custom head fixture was used to create an increased offset and torque. The stems were potted in accordance with ISO 7206–6:2013. The set-up was submerged in a 37°C PBS solution with a pH adjusted to 3 using HCL and NaCl concentration of 90gl−1. The components were cyclically loaded between 0.4 – 4 kN for 10 million cycles. After completion, the volumetric and linear wear was measured using a Talyrond-585 roundness measurement machine.

FE model: This was created to match the experimental set up (Figure 1). Taper geometry and experimental material data were obtained from the manufacturer (Zimmer Biomet). The coefficient of friction of the studied combination of components was based on previous experiments (Bitter, 2016). After each change in load the geometry was updated by moving nodes inwards perpendicular to the taper surface. Archard's Law (Archard, 1953) was used to calculate the wear with the following equation: H=k*p*S. Where H is the linear wear depth in mm, k is a wear factor (mm³/Nmm), p is the contact pressure (MPa) and S is the sliding distance (mm). The 10 million experimental cycles were simulated using a range of 5 to 200 computational cycles. For this purpose, the wear factor (k) was scaled for each simulation to match the volumetric wear found in the experiments.