Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 103 - 103
1 Feb 2020
Liu S Hall D McCarthy S Chen S Jacobs J Urban R Pourzal R
Full Access

Wear and corrosion debris generated from total hip replacements (THR) can cause adverse local tissue reactions (ALTR) or osteolysis, often leading to premature implant failure. The tissue response can be best characterized by histopathological analysis, which accurately determines the presence of cell types, but is limited in the characterization of biochemical changes (e.g. protein conformation alteration). Fourier transform infrared micro-spectroscopy imaging (FTIRI) enables rapid analysis of the chemical structure of biological tissue with a high spatial resolution, and minimal additional sample preparation. The data provides the most information through multivariate method carried out by hierarchical clustering analysis (HCA).

It is the goal of this study to demonstrate the beneficial use of this multivariate approach in providing pathologist with biochemical information from cellular and subcellular organization within joint capsule tissue retrieved from THR patients.

Joint capsule tissue from 2 retrieved THRs was studied. Case 1: a metal-on-polyethylene THR, and Case 2: a dual modular metal-on-metal THR. Prior to FTIRI analysis, tissue samples were formalin-fixed paraffin-embedded and 5μm thick microtome sectioned samples were prepared and mounted on BaF2 discs and deparaffinized. FTIRI data were collected using high-definition transmission mode (pixel size: ∼1.1 μm2). Hyperspectral images were exported to CytoSpec V2.0.06 for processing and reconstruction into pseudo-color maps based on cluster assignments.

Case 1 exhibited a strong presence of lymphocytes and macrophages (Fig. 1a). Since the process of taking second derivatives reduces the half width of the spectral peaks, it increases the sensitivity toward detecting shoulders or second peaks that may not be apparent in the raw spectra (Fig. 1b). Thus, areas occupied by lymphocytes and macrophages can be easily distinguished providing a fast tissue screening method. Here, HCA was able to distinguish macrophages and lymphocytes based on the infrared response, even in areas where both occurred intermixed. (Fig. 1c) The tissue in direct proximity to cells had a slightly altered collagenous structure. Case 1 also exhibited multiple glassy, green particles which can typically observed around THRs that underwent taper corrosion (Fig. 2a). HCA image was able to visualize and distinguish large CrPO4 particles, embedded within fibrin exudate rich areas, collagenous tissue without inflammatory cells, and a nearby area with a strong macrophage presence and some finer CrPO4 particles (Fig. 2d). Moreover, this method can not only locate macrophages, but distinguish particle-laden macrophages depending the type of particles within the cells. In Case 2 (Fig. 3a), clustering results (Fig. 3 b&c) are consistent with the fact that different particle types are associated with MoM bearing surface wear (Co rich particles), corrosion of the CoCrMo taper junctions (Cr-oxides and –phosphate), fretting of Ti-alloy dual modular tapers (Ti-oxides, Ti alloy particles), and even suture debris, which all occurred in this case. Although details of debris types are not available, specifications are possible by coupling other techniques.

The results demonstrate that multivariate FTIRI based spectral histopathology is a powerful tool to characterize the chemical structure and foreign body response within periprosthetic tissue, thus providing insights into the biological impact of different types of implant debris.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 157 - 157
1 May 2016
Zuo J Liu S Gao Z
Full Access

Objective

To three-dimensionally reconstruct the proximal femur of DDH (Developmental dysplasia of the hip) and measure the related anatomic parameters, so that we could have a further understanding of the morphological variation of the proximal femur of DDH, which would help in the preoperative planning and prosthesis design specific for DDH.

Methods

From Jan.2012 to Dec.2014, 38 patients (47 hips) of DDH were admitted and 30 volunteers (30 hips) were selected as controls. All hips from both groups were examined by CT scan and radiographs. The Crowe classification method was applied. The CT data were imported into Mimics 17.0. The three-dimensional models of the proximal femur were then reconstructed, and the following parameters were measured: neck-shaft angle, neck length, offset, height of the centre of femoral head, height of the isthmus, height of greater trochanter, the medullary canal diameter of isthmus(Di), the medullary canal diameter 10mm above the apex of the lesser trochanter(DT+10), the medullary canal diameter 20mm below the apex of the lesser trochanter(DT-20), and then DT+10/Di, DT-20/Di and DT+10/DT-20 were calculated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 153 - 153
1 Sep 2012
Callaghan J Beckert M Hennessy D Liu S Goetz D Gao Y Kelley S
Full Access

The first 101 posterior cruciate retaining modular tibial components of a single design performed by a single surgeon in 75 patients were evaluated at a minimum 20-year follow-up. All components were fixed with cement. These patients had been prospectively followed at five-year intervals and evaluated clinically using Knee Society ratings and documenting any need for reoperation. Serial radiographs were evaluated for radiolucencies, osteolysis or component migration until the time of patient death or at minimum 20-year follow-up.

At minimum 20-year follow-up, five knees (5%) had required a revision operation. All revisions occurred greater than 10 years following the index procedures. Benefits of modularity (i.e. retention of the tibial tray) were utilized in three of five cases in this closely followed cohort. Survivorship from any revision was 90.8% at 20 years. For the 16 living patients with 22 knees, the average Knee Society Clinical and Functional scores were 91 and 59, respectively, and the average range of motion was 115 degrees.

When considering gamma irradiated in air polyethylene and a first generation locking mechanism were utilized, these results encourage the authors to continue to use modular tibial trays.