Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches. We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides, immunofluorescence staining for F4/80 as macrophage marker and TAK1 were conducted as well. TAK1 expression was examined in RAW264.7 macrophages stimulated by HMGB1 via qPCR (Quantitative polymerase chain reaction) and Western blotting, and the effect of TAK1 inhibitor (5z-7 oxozeaenol) on TNF-α production was evaluated by immunofluorescence staining. Further, we explored the influence of intra-articular shRNA (short hairpin RNA) targeting TAK1 on collagenase-induced osteoarthritis in mice. Immunohistochemical staining confirmed significant elevation of TAK1 in osteoarthritic synovium, and immunofluorescence staining suggested macrophages as predominant residence of TAK1. In HMGB1-stimulated RAW264.7 macrophages, TAK1 expression was up-regulated both in mRNA and protein level. Besides, TAK1 inhibitor significantly impairs the production of TNF-α by macrophages upon HMGB1 stimulation. Moreover, intra-articular injection of lentivirus loaded with shRNA targeting TAK1 (sh-TAK1) reduced peri-articular osteophyte formation in collagenase-induced osteoarthritis in mice. TAK1 exerts a potent role in the pathogenesis of osteoarthritis by mediating the activation of macrophages.
Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD. Rat ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IL-4 modRNA engineered ADSCs (named as IL-4-ADSCs) on nucleus pulposus cells. ModRNA transfected mouse ADSCs with high efficiency and the IL-4 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IL-4 protein. In vitro, IL-4-ADSCs induced increased anabolic markers expression of nucleus pulposus cells in inflammation environment compared to untreated ADSCs. These findings collectively supported the therapeutic potential of the combination of thermosensitive chitosan hydrogel and IL-4-ADSCs for intervertebral disc degeneration management. Histological and in vivo validation are now being conducted.
Quantitative ultrasound (QUS) is a promising tool to estimate bone structure characteristics and predict fragile fracture. The aim of this pilot cross-sectional study was to evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragile fractures retrospectively in postmenopausal women. RF signal and speed of sound (SOS) were obtained using an axial transmission QUS at one‐third distal radius for 246 postmenopausal women. Based on the involved RF signal, we conducted a MResNet, which combines multi-channel training with original ResNet, to classify the high risk of fragility fractures patients from all subjects. The bone mineral density (BMD) at lumber, hip and femoral neck acquired with DXA was recorded on the same day. The fracture history of all subjects in adulthood were collected. To assess the ability of the different methods in the discrimination of fragile fracture, the odds ratios (OR) calculated using binomial logistic regression analysis and the area under the receiver operator characteristic curves (AUC) were analyzed. Among the 246 postmenopausal women, 170 belonged to the non-fracture group, 50 to the vertebral group, and 26 to the non-vertebral fracture group. MResNet was discriminant for all fragile fractures (OR = 2.64; AUC = 0.74), for Vertebral fracture (OR = 3.02; AUC = 0.77), for non-vertebral fracture (OR = 2.01; AUC = 0.69). MResNet showed comparable performance to that of BMD of hip and lumbar with all types of fractures, and significantly better performance than SOS all types of fractures.Methods
Results
Total joint replacement (TJR) was one of the most revolutionary breakthroughs in joint surgery. The majority studies had shown that most implants could last about 25 years, anyway, there is still variation in the longevity of implants. In US, for all the hip revisions from 2012 to 2017 in the United States, 12.0% of the patients were diagnosed as aseptic loosening. Variable studies have showed that any factor that could cause a systemic or partial bone loss, might be the risk of periprosthetic osteolysis and aseptic loosening. Breast cancer is the most frequent malignancy in women, more than 2.1 million women were newly diagnosed with breast cancer, 626,679 women with breast cancer died in 2018. It's been reported that the mean incidence of THA was 0.29% for medicare population with breast cancer in USA, of which the incidence was 3.46% in Norwegian. However, the effects of breast cancer chemotherapy and hormonotherapy, such as aromatase inhibitors (AI), significantly increased the risk of osteoporosis, and had been proved to become a great threat to hip implants survival. In this case, a 46-year-old female undertook chemotherapy and hormonotherapy of breast cancer 3 years after her primary THA, was diagnosed with aseptic loosening of the hip prosthesis. Her treatment was summarized and analyzed. Breast cancer chemotherapy and hormonotherapy might be a threat to the stability of THA prosthesis. More attention should be paid when a THA paitent occurred with breast cancer. More studies about the effect of breast cancer treatments on skeleton are required.
As peri-prosthetic aseptic loosening is one of the main causes of implant failure, inhibiting wear particles induced macrophages inflammation is considered as a promising therapy for AL to expand the lifespan of implant. Here, we aim at exploring the role of p110δ, a member of class IA PI3K family, and Krüppel-like factor 4 (KLF4) in titanium particles (TiPs) induced macrophages-inflammation and osteolysis. Firstly, IC87114, the inhibitor of p110δ and siRNA targeting p110δ were applied and experiments including ELISA and immunofluorescence assay were conducted to explore the role of p110δ. Sequentially, KLF4 was predicted as the transcription factor of p110δ and the relation was confirmed by dual luciferase reporter assay. Next, assays including RT-PCR, western blotting and flow cytometry were performed to ensure the specific role of KLF4. Finally, TiPs-induced mice cranial osteolysis model was established, and micro-CT scanning and immunohistochemistry assay were performed to reveal the role of p110δ and KLF4 in vivo. Here, we found that p110δ was upregulated in TiPs-stimulated macrophages. The inhibition of p110δ or knockdown of p110δ could significantly dampen the TiPs-induced secretion of TNFα and IL-6. Further mechanistic studies confirmed that p110δ was responsible for TNFα and IL-6 trafficking out of Golgi complex without affecting their expression in TiPs-treated macrophages. Additionally, we explored the upstream regulators and confirmed that Krüppel-like factor 4 (KLF4) was the transcription repressor of p110δ. Apart from that, KLF4, targeted by miR-92a, could also attenuate TiPs-induced inflammation by mediating NF-κB pathway and M1/M2 polarization. By the establishment of TiPs-induced mice cranial osteolysis model, we found that KLF4 knockdown exacerbated TiPs-induced osteolysis which was strikingly ameliorated by knockdown of p110δ. In summary, our study suggests the key role of miR-92a/KLF4/p110δ signal in TiPs-induced macrophages inflammation and osteolysis.
This study demonstrated that Sclerostin monoclonal antibody (Scl-Ab) enhanced bone healing in the rat osteotomy model. Scl-Ab increased callus size, callus bone volume fraction, rate of callus bone formation and fracture callus strength. Sclerostin is a protein secreted by osteocytes and is characterized as a key inhibitor of osteoblast-mediated bone formation. Previous studies demonstrated that treatment with a sclerostin monoclonal antibody (Scl-Ab) results in significantly increased bone formation, bone mass and strength in rat closed fracture model (1–2). However, the effects of Scl-Ab on healing of open fracture model have not yet been reported in rats. Previously in ORS and ASBMR Annual Meeting, we have reported that Scl-Ab promoted the open fracture healing at week 3 and week 6 post-fracture. Here we extended our investigation for up to week 9 with additional histological assessments and dynamic histomorphometric analysis to investigate the effects of systemic administration of Scl-Ab on a later phase of fracture repair.Summary Statement
Introduction
Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.