In all cases, revision was performed for mechanical loosening of one or several components. Using light microscopy, the articulating surface of each patella component was analyzed for six modes of damage: polishing, delaminating, surface deformation due to cold flow, scratching, pitting and abrasion. To describe the damage, the surface of the patella component was divided into four sections. The contact stresses between the patellar and femoral components were calculated in relation to the areas of wear. Volumetric wear could not be accurately established.
Four modes of damage were observed: polishing in 13, delimitation in 12, cold flow in 6 and scratching in 3. The median total area of polyethylene damage was for polishing 76.5%, delimitation 70.6%, cold flow 35.3% and scratching 17.6%. The average contact stress on the nonconforming Total Condylar patella component was 12.9 Kgf/mm2. It was significantly higher (p<
0.002) than the average contact stress on the conforming Kinematic patellar component – 2.9 Kgf/mm2. The area of wear was smaller, 357.2 mm2 for the nonconforming Total Condylar, than for the conforming Kinematic patella 439.2 mm2. However, this difference was not statistically significant. The average weight of the patients with the Kinematic knee (74.5 kg) was higher as compared to the patients with Total Condylar knee (66 kg) but the difference was not significant.