The aim of this study was to investigate whether mechanical loading induced by physical activity can reduce risk of sarcopenia in middle-aged adults. This was a longitudinal study based on a subset of UK Biobank data consisting of 1,918 participants (902 men and 1,016 women, mean age 56 years) who had no sarcopenia at baseline (assessed between 2006 and 2010). The participants were assessed again after 6 years at follow-up, and were categorized into no sarcopenia, probable sarcopenia, or sarcopenia according to the definition and algorithm developed in 2018 by European Working Group on Sarcopenia in Older People (EWGSOP). Physical activity was assessed at a time between baseline and follow-up using 7-day acceleration data obtained from wrist worn accelerometers. Raw acceleration data were then analysed to study the mechanical loading of physical activity at different intensities (i.e. very light, light, moderate-to-vigorous). Multinominal logistic regression was employed to examine the association between the incidence of sarcopenia and physical activity loading, between baseline and follow up, controlled for other factors at baseline including age, gender, BMI, smoking status, intake of alcohol, vitamin D and calcium, history of rheumatoid arthritis, osteoarthritis, secondary osteoporosis, and type 2 diabetes.Abstract
Objectives
Methods
With resumption of elective spine surgery services following the first wave of COVID-19 pandemic, we conducted a multi-centre BASS collaborative study to examine the clinical outcomes of surgeries. Prospective data was collected from eight spinal centres in the first month of operating following restoration of elective spine surgery following the first wave. Primary outcomes measures were the 30-day mortality rate and postoperative Covid-19 infection rate. Secondary outcomes analysed were the surgical, medical adverse events and length of inpatient stay.Abstract
Aim
Methods
In hip arthroplasty, it has been shown that assembly of the femoral head onto the stem remains a non-standardized practice and differs between surgeons [1]. Pennock et al. determined by altering mechanical conditions during seating there was a direct effect on the taper strength [2]. Furthermore, Mali et al. demonstrated that components assembled with a lower assembly load had increased fretting currents and micromotion at the taper junction during cyclic testing [3]. This suggests overall performance may be affected by head assembly method. The purpose of this test was to perform controlled bench top studies to determine the influence of impaction force and compliance of support structure (or damping) on the initial stability of the taper junction.Introduction
Materials and Methods
Mechanically assisted crevice corrosion of modular tapers continues to be a concern in total joint replacements as studies have reported increases in local tissue reactions1. Two surgical factors that may effect taper seating mechanics are seating load magnitude and orientation. In this study 12/14 modular taper junctions were seated over a range of loads and loading orientations. The goals of this study were to assess the effects of load magnitude and orientation on seating load-displacement mechanics and to correlate these to the pull-off load. Ti6Al4V 12/14 tapers and CoCrMo heads were tested axially at four seating load levels (n=5): 1-, 2-, 4- and 8- kN. Three orientation groups were tested at 4 kN (n=5), 0°, 10° and 20°. The load-displacement behavior during testing was captured using data acquisition methods and two non-contact eddy current sensors fixed to the neck, targeting head-neck relative motion (Micro-Epsilon). Loads were ramped (200 N/s) with a servohydraulic system from 0 N to peak load and held for 5s (Instron). Off-axis test samples were oriented in an angled fixture. Displacement and load data were recorded in LabView. Seating displacement was the distance traveled between 50 N and thepeak load. Axial tensile pull-off loads (5 mm/min) were applied until the locking ability of taper junctions failed. Statistical analysis was performed using ANOVA test (P<0.05).Statement of Purpose
Methods
To assess screw malposition rates and complications associated with pedicle screw insertion using 3D navigation technology. A retrospective study was undertaken for all cases where O-arm® and StealthStation® systems were used over a 2-year period. The primary outcome measure was return to theatre rates for pedicle screw malposition. A total of 938 screws were inserted (934 thoracolumbar and 4 cervical), and 103 patients underwent spinal fixation using O-arm® and StealthStation® navigation. 64 were revision cases and 39 primary cases. Average number of levels was 4.6. There were a total of 10 complications: 3 infections, 1 DVT, 1 PE, 1 fast atrial fibrillation (AF), 1 screw malposition, 1 non-union, 1 undisplaced vertebral body fracture and 1 nerve root compression following osteotomy. The percentage return to theatre for screw malposition using 3D navigation was 1% of patients and 0.1% of pedicle screws. No patients developed permanent neurological compromise. These systems provide accuracy that is comparable to traditional 2D fluoroscopic techniques. We advocate their use in the safe insertion of pedicle screws in complex revision deformity cases where original anatomical landmarks are absent or obscured. We also believe that radiation exposure is considerably less with navigation especially in these complex and revision cases.
Burroughs et al showed that frictional torque increases with increasing head size in a simple in vitro model and showed differences in frictional torque with different polyethylene materials [1]. Therefore, the purpose of this study was to evaluate the influence of bearing material and bearing size on the frictional torque of hip bearings utilizing a more physiologically relevant hip simulator model. A total of four hip bearing combinations (Crosslinked PE/CoCr, Conventional PE/CoCr, Crosslinked PE/Delta and Alumina /Alumina) with various bearing sizes were evaluated. The sizes tested in this study range from 22 mm to 44 mm; it is important to note that the study only evaluated bearing combinations (size and material combination) currently commercially available. A total of three samples per bearing combination were tested, with the exception of conventional PE, which included a total of 4 samples. A MTS hip joint simulator was used. All components were oriented anatomically with the femoral head mounted below on a rotating angled block which imparts a 23° biaxial rocking motion onto the head. Loading was held constant at each load level (500N, 1000N, 1500N, 2000N, 2450N) for at least two rotational cycles while all 3 axes of load and all 3 axes of moments were measured at 10 khz. Fresh Alpha Calf Fraction serum was utilized as a lubricant. Results show that frictional torque increases with the increase of head size regardless of head material for all polyethylene combinations (p > 0.05), as shown in Figure 1 and 2. However, results showed no change in frictional behavior for the Alumina/Alumina combination regardless of the bearing size. The results of this test did not show any significant difference between crosslinked PE and conventional PE materials for sizes 28 mm and 32 mm when paired against a CoCr head (p > 0.05) (Figure 3). The Alumina/Alumina bearing combination had the lowest frictional torque among all the bearing material combinations evaluated in this study. This data suggests that there is a strong correlation between increased head size and increased frictional torque (R2 = 0.6906, 0.8847) for the polyethylenes evaluated here regardless of head material. No correlation can be concluded for the Alumina /Alumina bearing combination (R2 = 0.0217). The combination of Alumina /Alumina seems to have the most favorable frictional properties. This data also suggests no effect on frictional properties regardless of the polyethylene material (crosslinked and conventional) for sizes 28 mm and 32 mm. The frictional torque values recorded in this study are different than those published by Burroughs et al [1]. This difference may be attributed to the testing methodology. The current study utilizes a hip simulator, which closely mimics the natural joint providing a more physiologically relevant model whereas the Burroughs et al study utilizes a single axis machine. It is important to understand that frictional behavior in hip bearings may be highly sensitive to bearing clearance, cup thickness, and stiffness, which may outweight the effect of head diameter. Further evaluation is necessary to isolate and investigate those parameters.
The dual mobility hip incorporates a femoral head mated within a spherical polyethylene liner which also has an unconstrained outer articulation with a polished metal shell. An additional wear surface is introduced at the outer articulation, however, the mobility of the polyethylene insert does allow for femoral-neck/acetabular-insert impingement by allowing the insert to displace upon contact. We evaluated the wear performance of a dual mobility hip during abrasive and impingement conditions independently. Three abrasive conditions were evaluated; abraded acetabular cup, abraded femoral head, and both abraded cup and head. Two impingement conditions were evaluated; impingement of the unconstrained acetabular insert against the femoral neck, and acetabular-insert/femoral-neck impingement when the insert becomes immobilized at the outer articulation. Wear testing was conducted using a hip stimulator. The simulator applied physiologic loading with a maximum load of 2450 N and serum as the lubricant. Components were abraded at the pole according to a published method. Abraded samples were tested at 0° of inclination. The unconstrained impingement condition was created by adjusting the femoral neck angle to achieve impingement with 45° of acetabular inclination. Neck to liner impingement can occur at either the superior or inferior surface of the femoral neck, with subsequent impingement occurring randomly as the insert is allowed to re-align itself throughout testing. The fixed impingement conditions was created by locking the outer bearing through fixturing and inducing impingement as previously described. Dual mobility control components were tested at 0° and 50° of inclination. Inserts were sequentially crosslinked GUR 1020 polyethylene. Results are shown in Figure 1. Abrasion testing results correlated to a combination of friction at the abraded articulation and bearing size. Abrasion at only the inner bearing had a larger effect on wear when compared to abrasion of only the outer bearing. When both sides were damaged, femoral head abrasion led to an increase in friction and resistance to movement at the inner articulation, thereby forcing an increase in overall movement of the outer articulation. This increased the contact area subject to motion across a scratched metal surface, which increased the wear rate of the system. Unconstrained impingement samples impinged during the first cycle and then randomly throughout testing, while the fixed impingement samples had predictable impingement at the same location every cycle of testing. The unconstrained impingement model was designed to replicate an instance where the dual mobility hip would run in a near/intermittent impingement condition where the polyethylene insert displaces upon contact with the femoral neck. Unconstrained impingement wear rates were not statistically different than the ideally aligned control. The fixed impingement samples wore at a higher rate than the unconstrained impingement and control groups. The insert encountered resistance to movement upon impingement resulting in wear and deformation at the point of contact. Additional intended bearing wear was also generated by head sliding and translation of the load path upon impingement of the rim. Note that this condition is difficult to envision clinically and all wear rates, even under adverse conditions, were acceptably low.
Multi-directional motion at the ball-socket interface of a hip replacement joint has been discovered as a fundamental feature that determines the magnitude of wear for ultra-high molecular weight polyethylene (UHMWPE). The present study considers the wear of UHMWPE moving along a circular path with a uniform angular change rate of the velocity vector defined by the curvature of the sliding circle. It is apparent the as the sliding circle radius increases the motion is approaching more towards linear tracking. Therefore, wear rate per unit sliding distance would decrease with increasing the slidng circle radius. However, the sliding distance per cycle increases linearly with the radius of the circle, which would cause a proportional increase in the wear rate per cycle. We hypothesize that these two opposing effects on wear with respect to the changing radius of the sliding circle would cancel out each other leading to wear rate per cycle being independent of sliding distance. Experiments were conducted on a hip simulator with a biaxial rocking motion that results in a circular sliding path at the polar region of the acetabular cup that experiences the highest contact stresses and wear. The radius of the sliding circle, Volumetric wear at 2 million cycles for both tests are summarized in Figure 1. Fig. 2 shows a graphic representation of the total volumetric wear (DV) as a function of the sliding circle radius (r). Total volumetric wear is independent of the head diameter (2R), the biaxial-rocking angle (a) and the sliding circle radius (r). The total volumetric wear is proportional to the number of cycles and independent of the sliding distance per cycle. The clinically observed wear rate-ball diameter relationship, therefore, is not attributed to variations in sliding distance per walking step with differing ball head sizes. For the same nominal contact area between a ball and a socket, the total volumetric wear of UHMWPE is independent of the ball diameter, the biaxial rocking angle and the sliding circle radius. In other words, the total volumetric wear is proportional to the number of cycles and independent of the sliding distance per cycle.
Pin-on-disk studies have demonstrated the role that cross-shear plays in polyethylene wear. It has been found that applying shear stresses on the polyethylene surface in multiple directions will increase wear rates significantly compared to linear sliding. Hip and knee joint replacements utilize polyethylene as a bearing surface and are subjected to cross-shear motions to various degrees. This is the mechanism that produces wear particles in hip and knee arthroplasty bearings and if excessive may lead to osteolysis, implant loosening, and failure. The amount of cross-shear is dependent on the bearing diameter and the angular motion exerted onto the bearing due to the gait of the patient. This study will determine the effect of sliding curvature (angular change per linear sliding distance) on the wear rate of polyethylene. Virgin polyethylene blocks were machined with a 28mm diameter bearing surface and against 28mm cobalt chromium femoral heads in a hip simulator. Dynamic loading was applied simulating walking gait but the motion differed between testing groups. Typical walking gait testing utilizes 23° biaxial rocking motion, in this study, 10°, 15°, 20°, and 23° biaxial rocking motions resulting in various sliding curvatures. Sliding motion path is described in Figure 1 and is a function of the bearing radius and the rocking angle. With increased rocking angle, the sliding distance reduces per cycle and the sliding path becomes more curved (more angular change per linear distance of sliding). Despite a significant increase in sliding distance at higher rocking angles, wear rates were relatively unchanged and ranged from 57mm3/mc to 62mm3/mc. Wear rates per millimeter increased exponentially with reduced sliding arc radius (smaller rocking angle) as shown in Figure 2. This study suggests that wear of polyethylene is highly dependent on sliding path curvature. The sliding path is largely a function of the bearing diameter and the patient activity. Large bearing diameter implants have been recently introduced to increase joint stability. Sliding distance increases proportional to the bearing radius which has led to some concerns regarding increased wear in larger bearings. However, in vitro wear studies have not shown this trend. Increased bearing diameter also increases the sliding path curvature which this study has shown to cause a reduction in wear roughly proportional to the radius of the bearing. Therefore, the increase in wear due to sliding distance is offset by the reduction in wear caused by the sliding curvature resulting in no significant change in wear with increased bearing diameter. Curved sliding path causes a change in surface shear direction which has been shown to increase wear of polyethylene. This study confirms that increased cross-shear in the form of more angular change per linear sliding distance can increase wear of polyethylene exponentially
While there is a desperate need for effective treatments for acute spinal cord injury (SCI), the clinical validation of novel therapeutic interventions is severely hampered by the need to recruit relatively large numbers of patients into clinical trials for sufficient statistical power. While a centre might annually admit 100 acute SCI patients, only a fraction may satisfy the basic inclusion criteria for an acute clinical trial, which typically requires patients of a certain injury severity (eg ASIA A), within a specific time window (eg. 12 hours from injury), and without other major injuries or conditions that would cloud the baseline neurologic assessment. This study was conducted to define that “fraction” of SCI patients that would theoretically satisfy standard inclusion criteria of an acute clinical trial. Using a local database, we reviewed patients admitted to our Level 1 trauma center with a complete (ASIA A) or an incomplete (ASIA B, C and D) acute SCI involving bony spinal levels between C0 and sacrum. All patients admitted over the 4 year period from 2005 to 2009 were reviewed. Demographic information and data about the patients' SCI and other injuries were reviewed. We then determined how many of the total number of SCI patients would be eligible for enrolment into a hypothetical acute clinical trial that required a valid baseline assessment of neurologic impairment, and an enrolment window of either 12 hours, 24 hours, or 48 hours.Introduction
Methods
Radial head fractures with fragment displacement should be reduced and fixed, when classified as Mason II type injuries. We describe a method of arthroscopic fixation which is performed as a day case trauma surgery, and compare the results with a more traditional fixation approach, in a case controlled manner. We prospectively reviewed six Mason II radial head fractures which were treated using an arthroscopic reduction and fixation technique. The technique allows the fracture to be mobilised, reduced, and anatomically fixed using headless screws. All arthroscopic surgeries were conducted as day-cases. We retrospectively collected age and sex matched cases of open reduction and fixation of Mason II fractures using headless screws. The arthroscopic cases required less analgesia, shorter hospital admissions, and had fewer complications. The averaged final range of follow-up, at 1 year post-operation was 15 to 140 degrees in the arthroscopic group and 35 to 120 degrees in the open group. The Mayo Elbow Performance Score was 95/100 and 90/100 respectively. No acute complications were noted in the arthroscopic group, and a radial nerve neuropraxia [n=1], superficial wound infection [n=1], and loose screw [n=1]. Two patients of the arthroscopic group required secondary motion gaining operations [n=1 arthroscopic anterior capsulectomy for a fixed flexion contracture of 35 degrees, and n=1 loss of supination requiring and arthroscopic radial scar excision]. Three patients in the open group required secondary surgery [n=2 arthroscopic anterior capsulectomy for fixed flexion deformities, and n=1 arthroscopic anterior capsulectomy for fixed flexion deformities, and n=1 arthroscopic radial head excision for prominent screws, loss of forearm rotation, and radiocapitellar arthrosis pain]. The technique of arthroscopic fixation of Mason II radial head fractures appears to be valid, with respect to anatomical restoration of the fracture, minimal hospital admission, reduction in analgesia requirement, fewer complications, and a decreased need for secondary surgery.
Steep angles (>
55°) reduce femoral head coverage decreasing contact area and can subject the acetabular rim to excessive stresses. In the case of metal-metal implants it has been shown that at steep angles there is no bedding-in of the implants and run-away wear occurs. The dual mobility bearing concept mates a metal femoral head with a polyethylene liner that is free to articulate inside a polished metal shell. Previous work has shown acetabular wear can be minimized with this design, possibly through reduction of total amount of cross-shear motion in the joint. An additional potential benefit may exist through the maintenance of conforming contact and head coverage even under high inclination angle. This study evaluates the influence of inclination angle on the wear performance of three hip bearing designs. Four sets of dual mobility implants, three sets of metal-on-metal hip implants, and five sets of fixed hip implants were evaluated per inclination angle. All polyethylene components were made of GUR 1020 UHMWPE that was sequentially crosslinked and annealed three times (X3). The MoM components were fabricated from high carbon cast CoCr as per ASTM F75 (no heat treatment). A hip joint simulator was used for testing for a total of 2.5 million cycles with the cups oriented at either 35° or 65° of abduction. Testing was run at 1Hz following Paul curve physiologic loading and statistical analysis was performed using the Student’s t-test (p<
0.05). results for the 35 degrees of inclination angle condition show no statistical difference between any of the testing combinations with X3 polyethylene showing immeasurable wear. At this angle wear of the MoM devices was similar, although ion levels were not measured. results for the 65 degree condition showed an increase for the fixed PE and MoM systems. The increase in fixed PE bearing wear is consistent with previous findings and still within noise level values. The increase in MoM wear was substantial with both heads and cups showing scratches and abrasion damage related to edge contact. There is a statistically significant wear rate reduction (p<
0.05) of over 94% for both the dual mobility and fixed bearing PE constructs when compared to MoM. When comparing wear rates of the dual mobility system to the standard fixed acetabular bearing, the dual mobility device exhibited an 85% (p<
0.05) reduction in wear rate. The results of this study support our hypothesis that acetabular wear at high angles can be diminished through design. This is likely due to maintenance of the nature of the primary inner bearing contact regardless of shell positioning. Based on these results this dual mobility construct can be expected to outperform a conventional fixed construct and a metal-on-metal construct in terms of wear at high inclination angles, without any of the metal ion release concerns.
For any fracture classification, a high level of intraobserver reproducibility and interobserver reliability is desirable. We compare the consistency of the AO and Neer classifications for proximal humerus fractures with an assessment of the digitised radiographs of 100 fractures by 10 orthopaedic surgeons and 5 radiologists using the General Electric Picture Archiving and Communications System (PACS), allowing manipulation of the image. This process repeated 1 month later. Reproducibility and reliability moderate for both the AO and Neer systems. Reproducibility using the AO/ ASIF system was slightly greater. The assessor’s level of experience and specialty did affect accuracy. The ability to electronically manipulate images does not improve reliability and their sole use in describing these injuries and comparing similarly classified fractures from different centres is not recommended. Fractures of the proximal humerus are common. Most undisplaced or minimally displaced, and treated conservatively. Up to one fifth may benefit from surgery. As decisions regarding treatment are based on the fracture type, a radiological classification should be easy to use and have a high degree of reliability and reproducibility to serve as a useful discriminator, creating standards by which treatment can be recommended and outcomes compared. Radiographs of 100 fractures of the proximal humerus selected. A true anteroposterior, scapular lateral, and axillary radiograph taken for each fracture. 10 orthopaedic surgeons and 5 radiologists recruited as assessors, including 5 specialist registrars. Each given a printed description of both Neer and AO classifications, a goniometer and ruler. The assessment preceeded by short lecture. Radiographs could be manipulated digitally for size, contrast, brightness, orientation and the negative image displayed. We did not require assessors to determine subgroups for reasons of simplicity. Reproducibility and reliability analysed using Kappa statistical methods. Coefficients for agreement compared using the Student t test incorporating the standard errors of kappa for these groups. A comparison made between radiologists and surgeons, and then consultant orthopaedic surgeons and trainees. In each case the AO/ASIF system was statistically (p<
0.01) more accurate. Agreement was greater for less complex (one and two part, and type A) fractures. Level of experience produced a statistically (p<
0.01) significant difference in accuracy. Specialty did not. Our analysis comparing the Neer and AO systems uses the largest group of assessors reviewing the largest number of radiographs reported in the literature. We concur with others in concluding that using these systems in isolation in determining treatment and comparing results following treatment cannot be recommended
For any fracture classification, a high level of intraobserver reproducibility and interobserver reliability is desirable. We compare the consistency of the AO and Frykman classifications for distal radius fractures using digitised radiographs of 100 fractures by 15 orthopaedic surgeons and 5 radiologists using a Picture Archiving and Communications System (PACS). The process was repeated 1 month later. Reproducibility moderate for both the AO and Frykman systems, reliability only fair for both the AO and Frykman systems. In each case reproducibilty using the Frykman system was slightly greater. The assessor’s level of experience and specialty was not seen to influence accuracy. The ability to electronically manipulate images does not appear to improve reliability compared to the use of traditional hard copies, and their sole use in describing these injuries is not recommended. These fractures are common, approximately one sixth of all fractures and the most commonly occurring fractures in adults. Their multitude of eponyms hint at the difficulty in formulating a comprehensive and useable system. The Frykman classification is most popular, but limited- does not quantify displacement, shortening or the extent of comminution. The more comprehensive AO system is limited in its complexity with 27 possible subdivisions. Computerised tomography shown to give only marginal improvement in consistency of classification. Radiographs of 100 fractures selected. Anteroposterior and lateral view for each. 15 orthopaedic surgeons and 5 radiologists recruited as assessors, including 5 specialist registrars. Each given a printed description of Frykman and AO classifications. Radiographs could be manipulated digitally. Intra and inter-observer reproducibility analysed. A comparison made comparing reproducibility between radiologists and surgeons, consultant orthopaedic surgeons and trainees. Statistical methods; analysis involves adjustment of observed proportion of agreement between observers by correction for the proportion of agreement that could have occurred by chance. Kappa coefficients compared using the Student t test incorporating standard errors of kappa for these groups. Median interobserver reliability was fair for both the AO (kappa = 0.31, range 0.2 to 0.38) and Frykman (kappa = 0.36, range 0.30 to 0.43) systems. Median intraobserver reproducibility was moderate for both the AO (kappa = 0.45, range 0.42 to 0.48) and Frykman (kappa = 0.55, range 0.51 to 0.57) systems. In each case the Frykman system was statistically (p<
0.01) more accurate. Level of experience, or specialty was not seen to influence accuracy (p<
0.01). Our results demonstrate that using them in isolation in determining treatment and comparing results following treatment cannot be recommended
The use of massive endoprostheses following bone tumour resection is well recognised. Where possible, joint salvage rather than joint replacement is usually attempted. However cases arise where there is insufficient bone following tumour resection to allow adequate fixation of a joint sparing prosthesis. We reporta series of 4 patients (aged 4–12), treated between 1994 and 2008, in which irradiated autologous bone has been combined with a diaphyseal or distal femoral replacement in order to preserve the native hip joint. There were 3 cases of osteosarcoma and 1 case of Ewing‘s sarcoma. After a mean follow-up of 53.5 months (range 9–168), all four patients are alive without evidence of local recurrence or metastases. One implant was revised after 14 years following fracture of the extending component of the growing endoprosthesis. There have been no cases of loosening or periprosthetic fracture. This is the first report of irradiated autologous bone with joint sparing endoprostheses in skeletally immature patients.
Acetabular rim damge due to rim impingement is frequently found on retrievals and may be associated with increased wear and contact stresses, instability, and implant loosening of total hip replacement devices. Large X3 bearings (>
36mm) from Stryker have increased implant range of motion and improved polyethylene material (sequentially crosslinked and annealed). A hip simulator wear study was performed with and without femoral neck to acetabular rim impingement to determine the wear performance of these new bearings under aggressive impingement conditions. Two sizes of these new components were tested (36mm with 3.9mm thickness and 40mm with 3.8mm thickness) with two standard sized controls (28mm with 7.9mm thickness in X3 and conventional polyethylene. The 36mm component was chosen to be the largest component utilizing the same shell as the standard 28mm size components while the 40mm component was chosen to be the thinnest bearing currently offered. Impingement significantly increased wear for all bearings (p<
0.05) but no cracking or failures of the rim occurred. Wear rates for all X3 bearings were statistically indifferent under each testing condition despite bearing size and thickness. Average wear rates for X3 bearings were 0.3mm3/million cycles (mc) under standard conditions and 3.5mm3/mc under impingement conditions. Average wear rates for conventional bearings were 19.5mm3/mc under standard conditions and 48.3mm3/mc under impingement conditions. Overall the X3 bearings exhibited a 93% reduction in wear under impingement conditions and 99% reduction in wear under standard conditions. Increased bearing range of motion reduces the chance of impingement. This study shows the simulated outcome even if these larger bearings were to impinge. We conclude that these larger X3 bearings exhibits the same wear performance as standard X3 bearings and significantly superior wear performance compared to conventional polyethylene bearings under standard and impingement conditions.
Femoral head roughening is a clinically observed phenomenon that is suspected to cause increased wear of acetabular inserts. Two approaches have been taken to reduce hip bearing wear. Improved femoral head materials may decrease the impact of roughening and reduce the effect of abrasion. Additionally, improved polyethylene materials may be utilized to reduce wear against smooth or roughened femoral heads. This study looks at these two approaches in the form of a toughened alumina femoral head (Biolox Delta) and a sequentially crosslinked and annealed polyethylene (X3). A wear study was performed with new and artificially scratched ceramic femoral heads (28mm Biolox Delta) as compared to new and artificially scratched Cobalt Chromium femoral heads. These femoral heads were articulated against both conventional (N2\Vac) and highly crosslinked (X3) polyethylene acetabular cups. Artificial scratching utilized a Rockwell C indentor loaded at 30N to scratch a multidirectional scratch pattern on the articulating surface of the femoral head to simulate in vivo roughening. Delta femoral heads exhibited superior resistance to scratching. Peak to valley roughness for CoCr heads was 7.1um while Delta heads only roughened to 0.4um. Head material under standard conditions (no scratch) had no effect on PE wear (p=0.31 and p=0.53). Under abrasive conditions, the Delta femoral head exhibited a clear advantage over CoCr heads (65–97% reduction in wear rate; p<
0.007). X3 polyethylene also showed a clear advantage over conventional PE against either CoCr or Delta heads and under both conditions (all p <
0.012). This study clearly demonstrates that X3 polyethylene has a clear wear advantage over conventional polyethylene despite head material or abrasive conditions. Secondary to the polyethylene choice, the use of a ceramic femoral head leads to superior performance under abrasive conditions.
Hip and knee wear simulators have been used by implant manufacturers and researchers for many years as a performance predictor and comparator for hip and knee implants. The clinical accuracy of these simulators in predicting wear depends heavily on the type of simulator as well as the methodology used. The joint lubricant used in the simulators is one crucial aspect that has been well studied in hip simulators. This study will compare the wear performance of a modern total knee replacement system using two commonly used simulator lubricants at various dilutions (Alpha Calf Serum and Bovine Calf Serum, Hyclone Labs). The Triathlon knee implant system (Stryker Orthopaedics) was used along with a six station knee wear simulator from MTS Systems to determine the effect of lubricant type and dilution. Wear rates were found to be dependent on the type and dilution of the lubricant. At 0g/L protein concentration (100% water) wear rates were 4.8mm3/million cycles (mc). With the introduction of Bovine serum, wear rates increase to a peak of 24mm3/mc at 5g/L of concentration. Increased concentration of Bovine serum resulted in a decrease of wear rates. Wear rates for Alpha serum peaked at 28mm3/mc at 20g/L concentration with decreased wear rates at higher concentrations. Knee implant wear performance is often characterized by wear simulation. As has been previously shown for hip simulations, this study shows the importance of choosing the correct lubricant type and dilution to correctly simulate wear performance. While this study cannot correlate any of the lubricants to the synovial fluid present in vivo, this study shows that 20g/L of Alpha serum produces the highest wear rates and should be used to determine worst case wear rates in the wear performance characterization of knee implants.
The purpose of this study is to demonstrate that definitive surgery (extraperiosteal excision) is required in patients with osteofibrous dysplasia (OFD) due to the risk of recurrence and co-existent adamantinoma OFD is an unusual childhood condition, which almost exclusively affects the tibia. It is thought to follow a slowly progressive course and to stabilise after skeletal maturity. The possible link with adamantinoma is controversial with some authors believing that they are part of one histological process. This therefore provides difficulty in recommending treatment options A retrospective review of OFD was conducted. Using the Stanmore Bone Tumour Unit database 22 cases were identified who were initially diagnosed with OFD or were diagnosed on final histology. All cases were tibial except one lesion in the ulna and one in the fibula Management was diverse depending on the severity of symptoms and the extent of the lesions encountered. Definitive (extraperiosteal) surgery in the majority of our patients was localized excision for small lesions (less than 50% of the bony circumference) and segmental excision followed by reconstructive surgery for more extensive ones. Seven patients had a sharkbite excision and a further seven were treated with fibula autografting. Of the latter group, one required further excision and bone transport due to recurrence of OFD. An additional five underwent bone transport &
distraction osteogenesis using the Ilizarov technique and one had a proximal tibial replacement. Nine initially underwent curettage, but eight recurred (recurrence rate 88.9%). No recurrences occurred following localized extraperiosteal excisions and bone transport. There were three confirmed cases of adamantinoma. In view of the risk of association of OFD with adamantinoma, and to some extent the continuous morbidity of OFD if left untreated, we believe that radical extraperiosteal excision is indicated in most if not all cases of OFD