We developed fast and easy-to-use computer software to perform three-dimensional (3D) analysis of the individual hip joint morphology using two-dimensional (2D) AP pelvic radiographs. Landmarks extracted from the radiograph were combined with a cone beam x-ray projection model and a strong lateral pelvic radiograph to reconstruct 3D hip joints. Twenty-five parameters including quantification of femoral head coverage can be calculated for a neutral orientation. The aim of the study was to evaluate the validity of this method for tilt and rotation correction of the acetabular rim and associated radiographic parameters.
External validation; internal validation; and intra-/interobserver analysis. A series of x-rays of 30 cadaver pelves mounted on a flexible holding device were available for step 1 and 2. External validation comprised the comparison of radiographical parameters of the cadaver hips when determined with our software in comparison with CT-based measurements or actual radiographs in a neutral pelvic orientation as gold standard. Internal validation evaluated the consistency of the parameters when each single pelvis was calculated back from different random orientations to the same neutral pelvic position. The intra-/interobserver analysis investigated the reliability and reproducibility of all parameters with the help of 100 randomized, blinded AP pelvic radiographs of a consecutive patient series.
All but one parameter (acetabular index) showed a substantial to almost perfect correlation with the CT-measurements. Internal validity was substantial to almost perfect for all parameters. There was a substantial to almost perfect reliability and reproducibility of all parameters except the acetabular index.
We developed a computer assisted total knee arthroplasty system to help the surgeon achieving more intra-operative accuracy.
The most common reason for possible complications after total hip replacement (THR) surgery is improper positioning of the implant components within the hip joint. Systems for computer assisted planning and navigation during THR have been developed. However, these established modules focus on the acetabular implant component only; disrespecting the fact that proper implant functioning relies upon correct placement of both components relative to each other. Therefore, we developed an extension to the existing CT-based SurgiGATE-Prosthetics system (Medivision, Oberdorf, Switzerland) for planning and placing of the acetabular component to give the surgeon a tool, which can help him/her to also plan and insert the femoral implant. Preoperatively, the appropriate size and position as well as the orientation of both implants components were planned. Following navigated cup placement a dynamic reference base (DRB) was fixed to the thighbone and the registration procedure was executed. For the preparation of the femoral cavity a modular PPF rasp system (Biomet-Merck, Darmstadt, Germany) was developed. All surgical action was visualised graphically within the patient’s image data. In addition, the surgeon was provided with real-time information about the depth of tool insertion, antetorsion angle, varus/valgus deviation, and the postoperative change in leg length and lateralisation of the hip joint. After extensive validation and accuracy analyses performed on plastic models the presented system was used during one operation. An extended clinical study is currently being started. We expect that the developed application will help the surgeon to better plan the appropriate size and position of the both parts of a hip endoprosthesis and will supply intraoperative feedback of the position of the surgical instruments relative to the patients’ anatomy and to the preoperative plan. Safer and more accurate placement of the implants components during free-hand THR surgery may be expected from this technology.
Correct placement of the total elbow endoprosthesis is a critical factor for the long-term success of an artificial joint. Correct restoration of the centre of rotation is essential for optimal outcome. To evaluate whether surgical navigation has the potential to improve accuracy during Total Elbow Arthroplasty (TEA), an existing CAS system was applied on one plastic model and three patients. The spine module of the SurgiGATE™ navigation system (Medivision, Oberdorf, Switzerland) was used. To apply it during TEA, a standard 3.5-mm drill guide was instrumented with infrared LEDs and calibrated. A dynamic reference base (DRB) was developed. Its base consisted of an X-shaped, scissors-like construct that could be clamped rigidly onto the distal humerus after exposure. On a plastic model, the DRB design was evaluated, and three landmarks suitable for intraoperative matching were identified. Subsequently, the Spine system was applied during three TEA surgeries. For the first surgery no pre-operative CT scan was acquired, but the design of the DRB, its camera visibility, and the accessibility of the landmarks were verified. For the other cases, the elbows were CT-scanned preoperatively. Planning consisted of 3-D segmentation as well as the definition of matching landmarks and a trajectory representing the position of a Steinmann pin, with which the humeral implant position is defined. Intraoperatively, the DRB was fixated, and matching was performed. Using the navigation system, the drill guide could then be aligned with the planned trajectory. For the second patient, no accurate matching was achieved, hence surgery was completed conventionally. The last patient could be registered precisely, and the Steinmann pin was placed as planned. Preliminary results show that CT-based navigation can be applied during TEA. Given a positive output of an ongoing clinical study, the development of a special TEA navigation system is planned.