header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 14 - 14
1 Nov 2021
Nicoules S Zaoui A Hage SE Scemama C Langlois J Courpied J Hamadouche M
Full Access

The purpose of this study was to compare oxinium versus metal-on-polyethylene wear in two consecutive prospective randomized series of low friction total hip arthroplasty at a minimum 10-year follow-up.

A total of 100 patients with a median age of 60.9 years were randomized to receive either oxinium (50 hips) or metal (50 hips) femoral head. The polyethylene socket was EtO sterilized in the first 50 patients, whereas it was highly cross-linked and remelted (XLPE) in the following 50 patients. The primary criterion for evaluation was linear head penetration measurement using the Martell system by an investigator blinded to the material. Also, a survivorship analysis was performed using wear related loosening revised or not as the end point.

Complete data were available for analysis in 40 hips at a median follow-up of 12.9 years (11 to 14), and in 36 hips at a median follow-up of 12.3 years (10 to 13) in the EtO sterilized and XLPE series, respectively.

In the EtO sterilized series, the mean steady-state wear rate was 0.245 ± 0.080 mm/year in the oxinium group versus 0.186 ± 0.062 mm/year in the metal group (p = 0.009). In the XLPE series, the mean steady-state wear rate was 0.037±0.016 mm/year in the oxinium group versus 0.036±0.015 mm/year in the metal group (p = 0.94). The survival rate at 10 years was 100% in both XLPE series, whereas it was 82.9% (IC 95%, 65–100) and 70.5% (IC95%, 50.1–90.9) in the metal-EtO and oxinium-EtO series, respectively.

This RCT demonstrated that up to 14-year follow-up, wear was significantly reduced when using XLPE, irrespective of the femoral head material. Also, no osteolysis related complication was observed in the XLPE series. In the current study, oxinium femoral heads showed no advantage over metal heads and therefore their continued used should be questioned related to their cost.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 27 - 27
1 Jan 2018
Zaoui A Langlois J El Hage S Scemama C Courpied J Hamadouche M
Full Access

The purpose of this study was to compare the effect of femoral head material (delta ceramic versus metal) on polyethylene wear in a consecutive prospective randomized series of low friction total hip arthroplasty.

A total of 110 patients with a mean age of 60.6 ± 9.3 (34–75) years were randomized (power of 90%, alpha of 5%) to receive either a metal (55 hips) or a delta ceramic (55 hips) femoral head. The polyethylene socket was moderately cross-linked (3 Mrads of gamma radiation in nitrogen) and annealed at 130°C in all hips. All other parameters were identical in both groups. The primary criterion for evaluation was linear head penetration measurement using the Martell system, performed by an investigator blinded to the material of the femoral head. Creep and steady state wear values were calculated.

At the minimum of 3-year follow-up, complete data were available for analysis in 38 hips at a median follow-up of 4.4 years (3.0 to 5.7), and in 42 hips at a median follow-up of 4.0 years (3.0 to 5.4) in the metal and delta ceramic groups, respectively. The mean creep, measured as the linear head penetration at one year follow-up, was 0.42 ± 1.0 mm in the metal group versus 0.30 ± 0.81 mm in the delta ceramic group (Mann and Whitney test, p = 0.56). The mean steady state penetration rate from one year onwards measured 0.17 ± 0.44 mm/year (median 0.072) in the metal group versus 0.074 ± 0.44 mm/year (median 0.072) in the delta ceramic group (Mann and Whitney test, p = 0.48). No case of delta ceramic femoral head fracture was recorded, and no hip had signs of periprosthetic osteolysis.

This study demonstrated that up to 5-year follow-up, delta ceramic femoral head did not significantly influence creep neither wear of a contemporary annealed polyethylene. Longer follow-up is necessary to further evaluate the potential clinical benefits of delta ceramic.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 166 - 172
1 Feb 2016
Langlois J Hamadouche M

Previous standards for assessing the reliability of a measurement tool have lacked consistency. We reviewed the most current American Society for Testing and Materials and International Organisation for Standardisation (ISO) recommendations, and propose an algorithm for orthopaedic surgeons. When assessing a measurement tool, conditions of the experimental set-up and clear formulae used to compile the results should be strictly reported. According to these recent guidelines, accuracy is a confusing word with an overly broad meaning and should therefore be abandoned. Depending on the experimental conditions, one should be referring to bias (when the study protocol involves accepted reference values), and repeatability (sr, r) or reproducibility (SR, R). In the absence of accepted reference values, only repeatability (sr, r) or reproducibility (SR, R) should be provided.

Take home message: Assessing the reliability of a measurement tool involves reporting bias, repeatability and/or reproducibility depending on the defined conditions, instead of precision or accuracy.

Cite this article: Bone Joint J 2016;98-B2:166–72.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1458 - 1462
1 Nov 2015
Langlois J Atlan F Scemama C Courpied JP Hamadouche M

Most published randomised controlled trials which compare the rates of wear of conventional and cross-linked (XL) polyethylene (PE) in total hip arthroplasty (THA) have described their use with a cementless acetabular component.

We conducted a prospective randomised study to assess the rates of penetration of two distinct types of PE in otherwise identical cemented all-PE acetabular components.

A total of 100 consecutive patients for THA were randomised to receive an acetabular component which had been either highly XL then remelted or moderately XL then annealed.

After a minimum of eight years follow-up, 38 hips in the XL group and 30 hips in the annealed group had complete data (mean follow-up of 9.1 years (7.6 to 10.7) and 8.7 years (7.2 to 10.2), respectively). In the XL group, the steady state rate of penetration from one year onwards was -0.0002 mm/year (sd 0.108): in the annealed group it was 0.1382 mm/year (sd 0.129) (Mann–Whitney U test, p < 0.001). No complication specific to either material was recorded.

These results show that the yearly linear rate of femoral head penetration can be significantly reduced by using a highly XLPE cemented acetabular component.

Cite this article: Bone Joint J 2015;97-B:1458–62.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 126 - 126
1 Sep 2012
Nich C Nich C Langlois J Marchadier A Vidal C Cohen-Solal M Petite H Hamadouche M
Full Access

Osteoporosis following ovariectomy has been suggested to modulate bone response to polyethylene wear debris. In this work, we evaluate the influence of estrogen deficiency on experimental particle-induced osteolysis. Polyethylene (PE) particles were implanted onto the calvaria of wild-type (WT), sham-ovariectomized (OVX), OVX mice and OVX mice supplemented with estrogen (OVX+E2) (12 mice per group). Sham-implanted mice served as internal controls. After 14 days, seven skulls per group were analyzed with a high-resolution micro-computed tomography (CT) and by histomorphometry, and for tartrate-specific alkaline phosphatase. Five calvariae per group were cultured for the assay of IL-1, IL-6, TNF- and RANKL secretion using quantitative ELISA. The expression of RANKL and OPG mRNA were evaluated using real-time PCR. As assessed by CT and by histomorphometry, PE particles induced an extensive bone resorption and an intense inflammatory reaction in WT, sham-OVX and OVX+E2 mice. In OVX mice group, these features appeared considerably attenuated. In WT, sham-OVX and OVX+E2 mice, PE particles induced an increase in serum IL-6, in TNF-and RANKL local concentrations, and resulted in a two-fold increase in RANKL/OPG mRNA ratio. Conversely, these parameters remained unchanged in OVX mice after PE implantation. The combination of two well-known bone resorptive mechanisms ultimately attenuated osteolytic response, suggesting a protective effect of estrogen deficiency on particle-induced osteolysis. This paradoxical phenomenon was associated with a downregulation of pro-resorptive cytokines. It is hypothesized that excessive inflammatory response was controlled, illustrated by the absence of increase of serum IL-6 in OVX mice after PE implantation.