Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Spine

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 17 - 17
1 Jun 2012
Yeung H Lam T Liu Z Tam E Sun G Lee K Qiu Y Cheng J
Full Access

Introduction

Despite extensive research, the cause of adolescent idiopathic scoliosis (AIS) is still largely unclear. Girls with AIS tend to be taller and leaner, and have a lower body-mass index (BMI) and lower bone mass, than do healthy girls. Recent MRI studies have shown the presence of relative anterior spinal overgrowth in girls with AIS. The lower bone mineral status and BMI could be related to dysfunctional central regulation pathway of growth, bodyweight, and bone metabolism. Following several interesting reports on the role of leptin in regulation of the above pathway in animals and human beings, our recent study has shown a low leptin concentration in girls with AIS girls compared with healthy adolescents. This finding leads to our new hypothesis that abnormal leptin bioavailability could be associated with the lower bodyweight, lower bone mineral density, and relatively disproportional endochondral skeletal growth in AIS. This study aimed to investigate the leptin bioavailability in girls with AIS.

Methods

53 girls with AIS and 27 healthy girls (aged 11–16 years) were recruited in this preliminary study. Clinical and anthropometric data were obtained. Blood samples were obtained for ELISA of leptin and soluble leptin receptor (sOB-R). Independent Student's t test and multivariate regression were used in group comparison.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 37 - 37
1 Jun 2012
Tang N Hung V Yeung H Liao C Lam T Lee K Ng B Cheng J
Full Access

Introduction

Genetic predisposition is a key causal factor in adolescent idiopathic scoliosis (AIS), which is the most common form of spinal deformity. However, common quantitative genetic effect estimates such as hereditability have not been fully evaluated and reported for this disorder. We aimed to determine the sibling recurrent risk and hereditability of AIS in first-degree relatives of 513 Chinese patients with this disorder.

Methods

Family members of 513 Chinese patients with AIS attending a scoliosis clinic were assessed. A diagnosis of AIS was made with the criteria of Cobb angle greater than 20°. The evaluation included clinical assessment and physical examination in a health screening centre by medical doctors with use of forward bending test. Any positive screening cases were referred to a scoliosis clinic for follow-up spinal radiograph. All radiographs were assessed by an orthopaedic surgeon in the scoliosis clinic. A population prevalence of scoliosis was obtained from the data of a territory-wide screening campaign. The prevalence of AIS among siblings of probands was measured both overall and divided by sex of siblings. The sibling recurrent risk (λs) was calculated for male and female siblings separately with reported population incidence of AIS.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 53 - 53
1 Jun 2012
Lam T Hung V Yeung H Yu F Chan C Ng B Lee K Qin L Cheng J
Full Access

Introduction

Adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density, which could be related to its etiopathogenesis. Apart from bone density, bone micro-architectures are equally important for better understanding of disease initiation and progression in AIS. Quantitative assessment of bone quality is hampered by the invasive nature of investigations, until recently when the high-resolution pQCT (XtremeCT) became available for revolutionary in-vivo microimaging and derivation of bone micro-architectural parameters. Our objective was to use this powerful instrument to study bone qualities in AIS and compare findings with those from healthy controls.

Methods

48 girls with AIS and 84 sex-matched healthy controls were recruited. Cobb angle was measured with standing radiographs, and imaging of the non-dominant distal radius was captured with XtremeCT according to a standard protocol.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 54 - 54
1 Jun 2012
Lam T Hung VY Yeung H Chu W Ng B Lee K Qin L Cheng J
Full Access

Introduction

The main challenge in management of adolescent idiopathic scoliosis (AIS) is to predict which curve will progress so that appropriate treatment can be given. We previously reported that low bone mineral density (BMD) was one of the adverse prognostic factors for AIS. With advancement in imaging technology, quantitative ultrasound (QUS) becomes a useful method to assess bone density and bone quality. The objective of this study was to assess the role of QUS as a radiation-free method to predict curve progression in AIS.

Methods

294 girls with AIS were recruited at ages 11–16 years and followed up until skeletal maturity. 269 age-matched healthy girls were recruited as controls. They provided the normal reference for calculation of Z score for QUS parameters. QUS measurements, including BUA (broadband ultrasound attenuation), VOS (velocity of sound) and SI (stiffness index) of the calcaneum, BMD of femoral neck, menarche history, ages, and Cobb angle of the major curve were recorded at baseline as independent variables. The predictive outcome was curve progression defined as an increase of Cobb angle of 6° or more. Logistic regression model and the ROC curve were used for statistical analysis.