The aim of this study was to investigate the impact of the level of upper instrumented vertebra (UIV) in frail patients undergoing surgery for adult spine deformity (ASD). Patients with adult spinal deformity who had undergone T9-to-pelvis fusion were stratified using the ASD-Modified Frailty Index into not frail, frail, and severely frail categories. ASD was defined as at least one of: scoliosis ≥ 20°, sagittal vertical axis (SVA) ≥ 5 cm, or pelvic tilt ≥ 25°. Means comparisons tests were used to assess differences between both groups. Logistic regression analyses were used to analyze associations between frailty categories, UIV, and outcomes.Aims
Methods
To compare the rates of sagittal and coronal correction for all-pedicle screw instrumentation and hybrid instrumentation using sublaminar bands in the treatment of thoracic adolescent idiopathic scoliosis (AIS). We retrospectively reviewed the medical records of 124 patients who had undergone surgery in two centres for the correction of Lenke 1 or 2 AIS. Radiological evaluation was carried out preoperatively, in the early postoperative phase, and at two-year follow-up. Parameters measured included coronal Cobb angles and thoracic kyphosis. Postoperative alignment was compared after matching the cohorts by preoperative coronal Cobb angle, thoracic kyphosis, lumbar lordosis, and pelvic incidence.Aims
Methods
Standing spinal alignment has been the center of focus recently, particularly in the setting of adult spinal deformity. Humans spend approximately half of their waking life in a seated position. While lumbopelvic sagittal alignment has been shown to adapt from standing to sitting posture, segmental vertebral alignment of the entire spine is not yet fully understood, nor are the effects of DEGEN or DEFORMITY. Segmental spinal alignment between sitting and standing, and the effects of degeneration and deformity were analyzed. Segmental spinal alignment and lumbopelvic alignment (pelvic tilt (PT), pelvic incidence (PI), lumbar lordosis (LL), PI-LL, sacral slope) were analyzed. Lumbar spines were classified as NORMAL, DEGEN (at least one level of disc height loss >50%, facet arthropathy, or spondylolisthesis), or DEFORMITY (PI-LL mismatch>10°). Exclusion criteria included lumbar fusion/ankylosis, hip arthroplasty, and transitional lumbosacral anatomy. Independent samples t-tests analyzed lumbopelvic and segmental alignment between sitting and standing within groups. ANOVA assessed these differences between spine pathology groups.INTRODUCTION
METHODS
Hip osteoarthritis (OA) results in reduced hip range of motion and contracture, affecting sitting and standing posture. Spinal pathology such as fusion or deformity may alter the ability to compensate for reduced joint mobility in sitting and standing postures. The effects of postural spinal alignment change between sitting and standing is not well understood. A retrospective radiographic review was performed at a single academic institution of patients with sitting and standing full-body radiographs between 2012 and 2017. Patients were excluded if they had transitional lumbosacral anatomy, prior spinal fusion or hip prosthesis. Hip OA severity was graded by the Kellgren-Lawrence grades and divided into two groups: low-grade OA (LOA; grade 0–2) and severe OA (SOA; grade 3–4). Spinopelvic parameters (Pelvic Incidence (PI), Pelvic Tilt (PT), Lumbar Lordosis (LL), and PI-LL), Thoracic Kyphosis (TK; T4-T12), Global spinal alignment (SVA and T1-Pelvic Angle; TPA; T10-L2) as well as proximal femoral shaft angle (PFSA: as measured from the vertical), and hip flexion (difference between change in PT and change in PFSA) were also measured. Changes in sit-stand radiographic parameters were compared between the LOA and SOA groups with unpaired t-test.Introduction
Methods