First-generation annealed HXLPE has been clinically successful at reducing both clinical wear rates and the incidence of osteolysis in total hip arthroplasty. However, studies have observed oxidative and mechanical degradation occurring in annealed HXLPE. Thus, it is unclear whether the favorable clinical performance of 1st generation HXLPE is due to the preservation of bearing surface tribological properties or, at least partially, to the reduction in patient activity. The purpose of this study was to evaluate the in vitro wear performance (assessed using multidirectional pin-on-disk (POD) testing) of 1st-generation annealed HXLPE with respect to in vivo duration, clinical wear rates, oxidation, and mechanical properties. 103 1st-generation annealed HXLPE liners were collected at revision surgery. 39 annealed HXLPE liners were selected based on their implantation time and assigned to three equally sized cohorts (n=13 per group); short-term (1.4–2.7y), intermediate term (5.2–8.0y) and long-term (8.3–12.5y). From each retrieved liner, two 9-mm cores were obtained (one from the superior region and one from the inferior region). Sixteen cores were fabricated from unimplanted HXLPE liners that were removed from their packaging and six pins from unirradiated GUR 1050 resin served as positive controls. Multidirectional POD wear testing was conducted against wrought CoCr disks in a physiologically relevant lubricant (20 g/L protein concentration) using a 100-station SuperPOD (Phoenix Tribology, UK). Each pin had its own chamber with 15mL lubricant maintained at 37±1°C. An elliptical wear pattern with a static contact stress of 2.0 MPa was employed. Testing was carried out to 1.75 million cycles at 1.0 Hz and wear was assessed gravimetrically. POD wear rates were calculated using a linear regression of volumetric losses. In vivo penetration was measured directly using a calibrated micrometer. Oxidation was assessed on thin films obtained from superior and inferior regions of the liners (ASTM 2102). Mechanical properties were assessed using the small punch test (ASTM 2183).Introduction
Materials and Methods
Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors influence stem taper corrosion with ceramic heads? 3) What is the influence of taper angle clearance on taper corrosion in THA? 100 femoral head-stem pairs were analyzed for evidence of fretting and corrosion. A matched cohort design was employed in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design and flexural rigidity. Fretting corrosion was assessed using a semi-quantitative scoring scale where a score of 1 was given for little to no damage and a score of 4 was given for severe fretting corrosion. The head and trunnion taper angles were measured using a roundness machine (Talyrond 585, Taylor Hobson, UK). Taper angle clearance is defined as the difference between the head and trunnion taper angles.Introduction
Methods