Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 24 - 24
1 Nov 2018
Matsuura Y Rokkaku T Kuniyoshi K
Full Access

Smith's fractures generally occur when falling on a flexed wrist; however, orthopedic trauma surgeons often encounter distal radius fractures with volar displacement in patients who have allegedly fallen on the palm of their hands. This study aimed to reveal both the basic and clinical pathogenesis of Smith's fracture through a step-by-step investigation. We enrolled 17 patients with Smith's fractures, of which 71% fell on the palm and only 6% on the dorsum of the hand. First, we interviewed the outpatients to determine the mechanics of the injury and the position of their arm during injury. Second, we created a three-dimensional (3D) finite element model to predict the arm's position when the Smith's fracture occurred, which finite element analysis revealed as a 30° angle between the long axis of the forearm and the ground in the sagittal plane. Third, using this predicted position, we conducted experiments on 10 fresh frozen cadavers to prove the possibility of causing a Smith's fracture by falling on the palm of the hand. The results showed Smith-type fractures in seven of 10 wrists, whereas Colles-type fractures did not occur. Finally, we analyzed stress distribution in the distal radius when a Smith's fracture occurs using the 3D finite element model. In conclusion, this study demonstrates that Smith's fractures can also occur by falling on the palm of the hand.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 789 - 794
1 Jun 2014
Sukegawa K Kuniyoshi K Suzuki T Ogawa Y Okamoto S Shibayama M Kobayashi T Takahashi K

We conducted an anatomical study to determine the best technique for transfer of the anterior interosseous nerve (AIN) for the treatment of proximal ulnar nerve injuries. The AIN, ulnar nerve, and associated branches were dissected in 24 cadaver arms. The number of branches of the AIN and length available for transfer were measured. The nerve was divided just proximal to its termination in pronator quadratus and transferred to the ulnar nerve through the shortest available route. Separation of the deep and superficial branches of the ulnar nerve by blunt dissection alone, was also assessed. The mean number of AIN branches was 4.8 (3 to 8) and the mean length of the nerve available for transfer was 72 mm (41 to 106). The transferred nerve reached the ulnar nerve most distally when placed dorsal to flexor digitorum profundus (FDP). We therefore conclude that the AIN should be passed dorsal to FDP, and that the deep and superficial branches of the ulnar nerve require approximately 30 mm of blunt dissection and 20 mm of sharp dissection from the point of bifurcation to the site of the anastomosis.

The use of this technique for transfer of the AIN should improve the outcome for patients with proximal ulnar nerve injuries.

Cite this article: Bone Joint J 2014;96-B:789–94.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 263 - 268
1 Mar 2002
Shinohara Y Kamegaya M Kuniyoshi K Moriya H

We have observed the natural history without treatment of 46 limbs in 29 patients with infantile tibia vara and a metaphyseal-diaphyseal angle (MDA) of more than 11°. The femorotibial angle (FTA) and MDA were measured, and Langenskiöld’s classification of radiological changes in the proximal medial metaphysis of the tibia was used. In 22 limbs which were not in Langenskiöld stages II to III the condition resolved spontaneously without treatment. Of the remaining 24 which were in stages II to III, in 18 it resolved spontaneously by the age of six years, but six showed little or no improvement at the latest follow-up. It was impossible to differentiate by measuring the FTA or MDA whether spontaneous resolution could be expected before the age of four years. There was no difference in the rate of resolution of the deformity between those patients who had been treated by a brace and those who had received no treatment. We advise no initial treatment but review at six-monthly intervals until the age of four years, even in patients with Langenskiöld stage-II to stage-III deformity. When a deformity persisted or progressed we carried out a corrective osteotomy after the age of four years.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 726 - 730
1 Jul 2001
Kamegaya M Shinohara Y Kuniyoshi K Moriya H

We studied in vivo the talonavicular alignment of club foot in infants using MRI. We examined 26 patients (36 feet) with congenital club foot. The mean age at examination was 9.0 months (4 to 12). All analyses used MRI of the earliest cartilaginous development of the tarsal bones in the transverse plane, rather than the ossific nucleus. The difference in the mean talar neck angle (44.0 ± 8.1°) in club foot was statistically significant (p < 0.001) when compared with that of the normal foot (30.8 ± 5.5°). The difference between the mean angles in the group treated by operation (47.9 ± 6.7°) and those treated conservatively (40.1 ± 7.5°) was also statistically significant. The anatomical relationship between the head of the talus and the navicular was divided into two patterns, based on the position of the mid-point of the navicular related to the long axis of the head. In the operative group, 18 feet were classified as having a medial shift of the navicular and none had a lateral shift. In the conservative group, 12 showed a medial shift of the navicular and six a lateral shift. All nine unaffected normal feet in which satisfactory MRI measurements were made showed a lateral shift of the navicular.

Club feet had a larger talar neck angle and a more medially deviated navicular when compared with normal feet. This was more marked in the surgical group than in the conservative group.