header advert
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 97 - 97
1 Aug 2013
Richter P Rahmanzadeh T Gebhard F Krischak G Arand M Weckbach S Kraus M
Full Access

INTRODUCTION

Isolated injuries of the sacral bone are rare. The pathomechanism of these injuries are usually high velocity accidents or falls from large heights. The computer-assisted implantation of iliosacral screws (SI-screw) becomes more important in the treatment of dorsal pelvic ring fractures. The advantage of the minimal-invasive screw placement is the reduction of the non-union and deep wound infection rate. Another advantage of computer-navigated SI-screw placement is the reduction of intraoperative radiation for the patient and the surgical staff. The purpose of this study was to analyse the position of navigated iliosacral screws.

METHODS

In the study group 74 screws (49 patients) were included and radiologically analysed. All screws were implanted using 3D-navigation (BrainLAB Vector Vision, Brainlab, Germany). Navigation was always executed with the same 3D c-arm (ARCADIS Orbic 3D, Siemens, Germany) and navigation system. We determined the grade of perforation and angular deviation in the postoperative CT-scans in all screws. The classification was performed according to Smith et al in 4 grades. Grade 0 implies no perforation and grade 1 a perforation less than 2 mm. Grade 2 correlates a perforation of 2–4 mm and grade 3 a perforation of more than 4 mm. Furthermore the intra- and postoperative complications as well as the body-mass-index, the co-morbidities and the duration of radiation were documented. The statistical analysis was executed using Microsoft Excel 2003.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 118 - 118
1 Aug 2013
Kraus M Dehner C Riepl C Krischak G Gebhard F Schöll H
Full Access

In orthopaedic surgery, as in many other surgical fields, there is a clear tendency towards the use of minimally invasive procedures. These techniques are increasingly being implemented almost routinely for procedures such as spine and pelvis surgery. However, for fracture treatment and for applications involving small bones, such as hand and foot surgery, these systems are hardly ever used. We introduce a new system for image based guidance in traumatology.

We included 20 patients with a fracture of the fifth metatarsal. They were randomised on admission into two groups. Ten patients in the metatarsal group were operated conventionally and ten were operated with the assistance of a new image guidance system. This system is based on 2D-fluoro images which are acquired with a conventional c-arm and are transferred to the system workstation. After detecting marked tools, it can be used to display trajectories for K-wire guidance in the c-arm shot.

The average duration of surgery (time from incision to suture) in the image-based group was 12.7 minutes ± 5.5 (min. 6, max. 23), in the conventional group it was 17 minutes ± 6.5 (min. 7, max. 28) (p=0.086). The average duration of radiation was 18 seconds ± 8.5 (min. 6, max 36) in the image-based group vs. 32.4 seconds ± 19.4 (min. 12, max. 66) in the conventional group (p=0.057). An average of 4.7 C-arm shots ± 2 (min 2, max 9) were necessary in the image-based group to position the K-wire. For the conventional group, 8.2 shots ± 2.3 (min 4, max 12) were used (p=0.0073). It took 1.6 trials ± 0.7 (min.1, max. 3) to position the K-wire for the image-based procedures, in the conventional group 2.7 trials ± 0.9 (min. 1, max 4) were necessary (p=0.0084). There were no malfunctions or adverse events in any of the image-based navigational cases. No screws needed to be replaced in the image-based group. In the conventional group, two screws were replaced intra-operatively because they were too short in the control c-arm shot, and the screw threads did not bridge the fracture gap completely, leading to insufficient compression.

In this pilot study with only a small sample size, the image-based guidance system could be integrated into the existing surgical workflow and was used for applications, where existing navigation systems are not commonly used. The technology gives the surgeon additional information and can reduce the number of trials for perfect implant positioning. This potentially increases the safety of the surgical procedure and spares intact bone substance which is essential for the footing of implants in small bones and fragment fixation. Whether these factors contribute to a reduction in complications or revision rate must be confirmed in larger prospective studies.