Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 1, Issue 6 | Pages 272 - 280
19 Jun 2020
King D Emara AK Ng MK Evans PJ Estes K Spindler KP Mroz T Patterson BM Krebs VE Pinney S Piuzzi NS Schaffer JL

Virtual encounters have experienced an exponential rise amid the current COVID-19 crisis. This abrupt change, seen in response to unprecedented medical and environmental challenges, has been forced upon the orthopaedic community. However, such changes to adopting virtual care and technology were already in the evolution forecast, albeit in an unpredictable timetable impeded by regulatory and financial barriers. This adoption is not meant to replace, but rather augment established, traditional models of care while ensuring patient/provider safety, especially during the pandemic. While our department, like those of other institutions, has performed virtual care for several years, it represented a small fraction of daily care. The pandemic required an accelerated and comprehensive approach to the new reality. Contemporary literature has already shown equivalent safety and patient satisfaction, as well as superior efficiency and reduced expenses with musculoskeletal virtual care (MSKVC) versus traditional models. Nevertheless, current literature detailing operational models of MSKVC is scarce. The current review describes our pre-pandemic MSKVC model and the shift to a MSKVC pandemic workflow that enumerates the conceptual workflow organization (patient triage, from timely care provision based on symptom acuity/severity to a continuum that includes future follow-up). Furthermore, specific setup requirements (both resource/personnel requirements such as hardware, software, and network connectivity requirements, and patient/provider characteristics respectively), and professional expectations are outlined. MSKVC has already become a pivotal element of musculoskeletal care, due to COVID-19, and these changes are confidently here to stay. Readiness to adapt and evolve will be required of individual musculoskeletal clinical teams as well as organizations, as established paradigms evolve.

Cite this article: Bone Joint Open 2020;1-6:272–280.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 116 - 116
1 Apr 2019
Gordon A Golladay G Bradbury TL Fernandez-Madrid I Krebs VE Patel P Higuera C Barsoum W Suarez J
Full Access

Introduction & Aims

Studies have shown that as many as 1 in 5 patients is dissatisfied following total knee replacement (TKA). There has also been a large reported disparity between surgeon and patient perception of clinical “success”. It has long been shown that surgeon opinion of procedural outcomes is inflated when compared with patient-reported outcomes. Additionally, TKA recipients have consistently reported higher pain levels, greater inhibition of function, and lower satisfaction than total hip replacement (THA) recipients. It is imperative that alternative methods be explored to improve TKA patient satisfaction. Therefore, the purpose of this study was to determine whether or not patients with a balanced TKA, as measured using intraoperative sensors, exhibit better clinical outcomes.

Methods

310 patients scheduled for TKA surgery were enrolled in a 6 center, randomized controlled trial, resulting in two patient groups: a sensor-guided TKA group and a surgeon-guided TKA group. Intraoperative load sensors were utilized in all cases, however in one group the surgeon used the feedback to assist in balancing the knee and in the other group the surgeon balanced without load data and the sensor was used to blindly record the joint balance. For this evaluation, the two groups were pooled and categorized as either balanced or unbalanced, as defined by a mediolateral load differential less than 15 lbf (previously described in literature). Clinical outcomes data were collected at 6 weeks, 6 months and 1 year post- operatively, including Knee Society Satisfaction and the Forgotten Joint Score. Using linear mixed models, these outcome measures were compared between the balanced and unbalanced patient groups.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 65 - 65
1 Dec 2013
Gerges J Krebs VE Hitt K Hedley A Wenokor R Singer M
Full Access

Introduction:

For 30 years, uncemented anatomic hip stems have been implanted with documented clinical results[1,2]. Their geometry can be linked back to the geometry of the PCA and ABG stems. Modifications to date include stem length, body geometry, material, and reduction in distal geometry. New tools have been developed allowing anatomical measurements and analysis of three-dimensional digital femora geometry through CT scans[3]. The purpose of this study is to analyze three-dimensional contact of various anatomic hip stem designs using this technique.

Methods:

Six femora (57–87 yrs, 72–88 kg), were selected from a CT scan database (SOMA™) of 604 Caucasian bones. They were selected based on femoral anteversion (average +/−1.5 * std. dev.) with three measuring[4] 8–10° and three 31–33° of anteversion. The CT scans were segmented into cancellous/cortical bone and converted into CAD models in PRO/Engineer Wildfire (v.5). A/P views of the bones were scaled to a 120% magnification to allow three surgeons to surgically template and choose the stem size and location (maximizing fill (n = 1); restoring the head center (n = 2)) with two implant designs (1-Citation TMZF and 2-ABG II Monolithic, Stryker Orthopaedics, Mahwah). Measurements from templating were used to virtually implant CAD models of the implants into the bones (n = 36 bone/stem assemblies). The assemblies were imported into Geomagic Qualify 2012 for 3D deviation analysis comparing the coated region of the implant to the cortical-cancellous boundary. The analysis generated color map profiles based on the following categories: Contact (−2.0 to 0.5 mm), Conformity (0.5 to 2.0 mm), Proximity (2.0 to 5.0 mm), and Gap (5.0 to 12 mm) and the percent of the surface that was within each of these categories. These results were compared for patterns within and across the anatomic families.