Surgical microfracture is considered a first line treatment for talar osteochondral defects. Pain reduction, functional improvement and patient satisfaction are described to be 61–86% in both primary and secondary osteochondral defects. However, limited research is available whether improvement of the surgical technique is possible. We do know that the current rigid awls and drills limit the access to all locations in human joints and increase the risk of heat necrosis of bone. Application of a flexible water jet instrument to drill the microfracture holes can improve the reachability of the defect without inducing thermal damage. The aim of this study is to determine whether water jet drilling is a safe alternative compared to conventional microfracture awls by studying potential side effects and perioperative complications, as well as the quality of cartilage repair tissue in a caprine model. 6 mm diameter talar chondral defects were created bilaterally in 6 goats (12 samples). One defect in each goat was treated with microfracture holes created with conventional awls. The contralateral defect was treated with holes created with 5 second water jet bursts at a pressure of 50 MPa. The pressure was generated with a custom-made setup using an air compressor connected to a 300 litre accumulator that powered an air driven high-pressure pump (P160 Resato, Roden, The Netherlands,
The goal of this study was (1) to investigate the relationships between the bony contours of the knee and the popliteus tendon before and after TKA and (2) to analyse the influence of implant sizing. Our hypothesis was that an apparently well-sized prosthesis, will modify the position or the tracking of popliteus tendon. 4 fresh frozen cadavers were selected. The popliteus tendon was injected with contrast dye and a CT-scan was performed from full extension to full flexion with increments of 20°. Afterwards a total knee arthroplasty (TKA) was performed. Each cadaver received either a normal-sized, oversized, undersized or mobile bearing prosthesis. After TKA the limb was scanned again using the same protocol as before. 3D-reconstructions were created using Materialise Mimics software. These 3D-models were then imported into custom made Matlab software to measure and compare the deviation of the popliteus tendon before and after TKA.Background
Methods
To determine the mechanisms and extents of popliteus impingements before and after TKA and to investigate the influence of implant sizing. The hypotheses were that (i) popliteus impingements after TKA may occur at both the tibia and the femur and (ii) even with an apparently well-sized prosthesis, popliteal tracking during knee flexion is modified compared to the preoperative situation. The location of the popliteus in three cadaver knees was measured using computed tomography (CT), before and after implantation of plastic TKA replicas, by injecting the tendon with radiopaque liquid. The pre- and post-operative positions of the popliteus were compared from full extension to deep flexion using normosized, oversized and undersized implants (one size increments). At the tibia, TKA caused the popliteus to translate posteriorly, mostly in full extension: 4.1mm for normosized implants, and 15.8mm with oversized implants, but no translations were observed when using undersized implants. At the femur, TKA caused the popliteus to translate laterally at deeper flexion angles, peaking between 80º-120º: 2.0 mm for normosized implants and 2.6 mm with oversized implants. Three-dimensional analysis revealed prosthetic overhang at the postero-superior corner of normosized and oversized femoral components (respectively, up to 2.9 mm and 6.6 mm). A well-sized tibial component modifies popliteal tracking, while an undersized tibial component maintains more physiologic patterns. Oversizing shifts the popliteus considerably throughout the full arc of motion. This study suggests that both femoro- and tibio-popliteus impingements could play a role in residual pain and stiffness after TKA.