header advert
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 92 - 92
1 Sep 2012
Korduba L Klein R Essner A Kester M
Full Access

INTRODUCTION

Wear and fracture of patellar components has been frequently reported as a failure mode for cemented and press-fit patellar components. Malalignment of the patellar components may cause higher contact stresses, which may lead to excessive wear, delamination, and/or component fracture. In vitro testing of the patella in a clinically relevant malaligned condition is necessary to demonstrate adequate performance of the patellar component and assess the endurance of its fixation features under severe loading conditions. The purpose of this study was to test in vitro the patellar components under malaligned conditions using a knee joint simulator.

MATERIALS AND METHODS

A 6 station MTS (Eden Prairie, MN) knee joint wear simulator and Alpha Calf Fraction serum (Hyclone Labs, Logan, UT) diluted to 50% with a pH-balanced 20-mMole solution of deionized water and EDTA was used (protein level = 20 g/l) for testing. Asymmetric, all-polyethylene, patellar components with an overall construct thickness of 11 mm (Duracon®, Stryker Orthopaedics, Mahwah, NJ) were used. Appropriately sized cobalt-chrome femoral components articulated against the patellae.

The patellae were cemented (Simplex, Stryker Orthopaedics, Mahwah, NJ) to delrin fixtures, which placed the patella in 10° of lateral tilt (Figure 1). This angle was chosen based off the work of Huang et al, which was one of the larger average tilt angles reported in vivo. Replicating this scenario in vitro allows for observation of the potential scenario that may occur as the femoral component maintains contact strictly on the thinner lateral edge of the patella, concentrating both the axial and shear loads on a small area of polyethylene.

The loading and kinematic profiles used for testing were published previously (maximum axial load: 2450N and maximum patellofemoral angle: 54°. Variations of the loading profile were studied by evaluating the effects of heavier patients, which increased the maximum axial load to 3100N(250lb patient) and 3750N(300lb patient) (Figure 2). Lateral offset was tested to evaluate the effect of malalignment. Increments of 1mm were analyzed starting from the neutral position, eventually reaching a maximum lateral offset of 5mm.

A 6-dof load cell was placed beneath the patella fixturing to capture dynamic loads (ATI, Apex, NC). The axial and medial/lateral shear loads where used to calculate the resultant medial/lateral shear force being applied to the patellar pegs.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 143 - 143
1 Sep 2012
Korduba L Loving L Klein R De Luise M Patel A Kester M
Full Access

INTRODUCTION

Many studies have looked at the effects of titanium tibial baseplates compared to cobalt chrome baseplates on backside wear. However, the surface finish of the materials is usually different (polished/unpolished) [1,2]. Backside wear may be a function not only of tray material but also of the locking mechanism. The purpose of this study was to evaluate the wear performance of conventional polyethylene inserts when mated with titanium tibial trays or cobalt chrome tibial trays that both have non-polished topside surfaces.

MATERIALS AND METHODS

Three titanium (Ti) trays were used along with three cobalt chrome (CoCr) trays. The Ti trays underwent Type II anodization prior to testing. All trays were Triathlon® design (Stryker Orthopaedics, Mahwah, NJ). Tibial inserts were manufactured from GUR 1020 conventional polyethylene then vacuum/flush packaged and sterilized in nitrogen (30 kGy). Appropriate sized CoCr femoral components articulated against the tibial inserts (Triathlon®, Stryker Orthopaedics, Mahwah, NJ).

Surface roughness of the tibial trays was taken prior to testing using white light interferometry (Zygo Corp, Middlefield, CT). A 6-station knee simulator (MTS, Eden Prairie, MN) was used for testing. Two phases were conducted. The first phase used a normal walking profile, as dictated by ISO 14243-3 [3]. The second phase used waveforms created specifically for stair climbing kinematics. Testing was conducted at a frequency of 1 Hz for 2 million cycles for each test with a lubricant of Alpha Calf Fraction serum (Hyclone Labs, Logan, UT) diluted to 50% with a pH-balanced 20-mMole solution of deionized water and EDTA (protein level = 20 g/l) [4]. The serum solution was replaced and inserts were weighed for gravimetric wear at least every 0.5 million cycles. Standard test protocols were used for cleaning, weighing and assessing the wear loss of the tibial inserts [5]. Soak control specimens were used to correct for fluid absorption with weight loss data converted to volumetric data (by material density). Statistical analysis was performed using the Student's t-test (p<0.05).