Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 18 - 18
1 Jan 2004
Kleffner B Thümler P Brehm P Müller P
Full Access

The disadvantages of sawing for precise bone cuts are well known: untrue cuts, heat and metal wear. The main limiting factors of available milling devices are the difficult handling and high costs, especially if the devices are based on a robot. Supported by clinical users and mechanical engineers a milling concept adopted from machining has been realised in order to overcome this limitations. The „All-in-One Milling-Tool“ achieves the same precision of a robot by a mechanically guided milling resection far below the necessary investment for a robot. Three methods are provided for the alignment of the resection planes and will be discussed: intramedullary adjustment, 3D CT-based planning and intramedullar performance as well as the performance under control by navigation. All versions are based on a handheld resection and guarantee a visual and haptical feedback for the surgeon. The use of navigation has the advantage of the accurate transfer of the 3D plan into the OR, the interactive facilitated alignment und resection steps and the documentation of planned and actual implant position.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 12 - 12
1 Jan 2004
Kleffner B Thümler P Brehm P Müller P
Full Access

The disadvantages of sawing for precise bone cuts are well known: untrue cuts, heat and metal wear. The main limiting factors of available milling devices are the difficult handling and high costs, especially if the devices are based on a robot. Supported by clinical users and mechanical engineers a milling concept adopted from industrial machining has been realised in order to overcome this limitations. The “All-in-One Milling-Tool” achieves the same precision of a robot by a mechanically guided milling resection far below the necessary investment for a robot. Once fixed at the femur, the device allows all femural and tibial resections. Three methods are provided for the alignment of the resection planes and will be discussed: intramedullary adjustment, 3D CT-based planning and intramedullar performance as well as the performance under navigation control. All versions are based on a handheld resection and guarantee a visual and haptical feedback for the surgeon. The use of navigation has the advantage of the accurate transfer of the 3D plan into the OR, the interactive guided and facilitated alignment und resection steps and the documentation of planned and actual implant position.