To investigate the ability of the bacteriophage Sb-1 to treat and prevent implant-associated infections due to methicillin-resistant Staphylococcus aureus (MRSA) in The stability of Sb-1 in Aim
Method
Virulent bacteriophages are known to be an effective therapy against various human bacterial infections. The aims of the study are to evaluate i) the killing activity of an antistaphylococcal phage lysate (ASPL), available in the Czech Republic for topical application, against The susceptibility of 25 MRSA and 18 methicillin-sensitive Sa (MSSA) strains to the ASPL was evaluated by spot assay. In addition, susceptibility of four laboratory MRSA strains, including ATCC 43300, ATCC 33591, Mu3 (MRSA/hetero vancomycin intermediate resistant Sa) and Mu50 (MRSA/vancomycin-resistant Sa) was also tested. The activity of ASPL against planktonic and biofilm-embedded MRSA ATCC 43300 was evaluated in real-time by isothermal microcalorimetry. The minimum heat inhibitory concentrations (MHIC) was defined as the lowest antimicrobial concentration leading to the lack of heat flow production after 24h for both planktonic and biofilm-embedded cells. The viability of bacterial cells was assessed by plating and colony counting. The minimum bactericidal concentration (MBC) was defined as the lowest antimicrobial concentration leading the reduction of 3 log CFU compared to the untreated control.Aim
Method
Phage therapy has attracted attention as a promising alternative treatment option for biofilm infections. To establish a successful phage therapy, a comprehensive stock of different phages covering a broad bacterial spectrum is crucial. We screened human and environmental sources for presence of lytic phages against selected bacteria. Saliva collected from 10 volunteers and 500 ml of sewage water were screened for the presence of lytic phages active against 20 clinical strains of Aim
Methods