In our outpatient clinic we have assessed the clinical follow-up as clinical examination (Enneking-score) and standardized radiological follow-up for 5 years, then once per year. In the focus of interest were aseptic loosening of the stems, wear of polyethylene, and mechanical problems as implant failure
We conclude that in tumour patients with major osseous reconstruction after wide resection a certain loss ob function cannot be avoided, but the rate of complications in the long-term-follow-up after implantation of modular tumour prosthesis is acceptable.
Especially, no cases of lesions of the axillary nerve or frozen shoulder were seen. The latter we believe is due to the MI procedure and the early functional treatment due to high primary stability of the NCB-PH® plate. Despite good functional outcome, younger patients with higher levels of activity compared to the average patient sustaining proximal humeral fractures tend to feel subjective problems with the plate in situ demanding surgical removal of hardware. The long-term results also prove the NCB-PH® plate to be a safe and effective method of treatment reaching a functional outcome that enables the mostly old patients to regain an acceptable level of activity. Removal of hardware is easy to perform and offers especially in the younger patient a possibility to at least improve patients’ subjective outcome
Against this background, the hypothesis is formulated that functional disturbances in the form of pathological activities of the neck muscles occur as a result of a whiplash injury of the cervical spine. These pathological muscle activities can be demonstrated electromyographically and differ from the patterns of activity of healthy subjects.
A subsequent study was conducted to validate the results that had been obtained. For this purpose, the electromyographical activity of the semispinalis capitis muscle was recorded in another subject group (n=20) and patients with acute symptoms as a result of a whiplash injury of the cervical spine (QTF grade II) (n=35).
Subjects in our study, for instance, show a decrease in electrical activity during flexion and the resulting stretching of the semispinalis capitis muscle, while the same movement causes an increase in activity in patients. On the basis of these differences, 93 % of subjects (specificity) and 83 % of patients (sensitivity) could be classified correctly with a discriminance analysis. In the second study, the specificity was 88 % while a sensitivity of 86 % was determined in the acute patient population.
Frontal collisions (n=13): The median delta-V for frontal collisions is 24 km/h (min=8 km/h; max=50 km/h). 4 individuals reported symptoms. Under delta-V 20, one individual had a fractured cervical vertebra (QTF IV). Side collisions (n=19): The median delta-V for side collisions is 12 km/h (min=4 km/h; max=59,3 km/h). 9 individuals reported symptoms. Under delta-V 10 km/h, two patients had symptoms (QTF II and QTF IV (fracture).
The degree of correction was controlled during the operation with the navigation system and compared with pre- and postoperative 2.5D ultrasound measurements to avoid projection errors of long standing x-rays.
The postoperative 2.5D ultrasound leg axis analysis showed a maximum of +/− 2° difference between the pre-, intra- and postoperative measurements.
This first results show a promising increase of accuracy while radiation can be reduced. The actual values show that the main goal to increase the intraoperative accuracy in corrective osteotomies can be achieved with computer aided surgery.
In vitro experiments have shown, that stabilisation of the fibula in complete fractures of the lower leg give more stability compared to a single stabilisation of the tibia. However it is not known how this biomechanical conditions influence the bone healing process. To investigate the effect of fibula stability in tibia fracture healing tibial osteotomies in rats with and without fibula fractures were compared. Male wistar rats (n=18) were operated by a transverse osteotomy of the proximal tibia of the left leg. Fracture was stabilised by intramedullary nailing. In 8 cases an additional closed fibula fracture was performed. The healing period was 21 days. Each whole leg was examined by x-ray. After explantation of the tibia and removing of the nail and the fibula, the tibia was examined by CT-Scan, three-point-bending and histological evaluation. Animals, who had a fibula fracture along with the tibia fracture presented with delayed healing. Density in CT-scan was 30% lower (p=0,0002) in animals with a fibula fracture (405mg/ccm, SD:64) compared to those without a fibula fracture (mean=577mg/ccm, SD:17). In three point bending the bending stiffness was 79% lower (p=0,0006) in animals with a fibula fracture (mean=252Nmm/mm, SD:118) compared to animals without a fibula fracture (mean=1219Nmm/mm, SD:478). The breaking force was 59% lower (p=0,0004) in animals with a fibula fracture (mean=17,5N, SD:6) compared to animals without a fibula fracture (mean=42,4N, SD:14). Complete fractures of the lower leg healed considerably worse than solitary fractures of the tibia. We conclude that the missing of rotational stability of our k-wire fixation of the tibia with a unfixed fibula fracture is one of the reasons for the delay in fracture repair. The results support the in vitro findings of the biomechanical importance of the fibula for the stability of tibia fractures.
Non-steroidal anti-rheumatics (NSAR) are often used in patients with fractured bones for analgetic reasons. This animal experiment was performed to determine the influence of NSAR on the process of fracture healing. As an alternative central acting analgetic without peripheral effect Tramadol was included in this experiment. Wistar rats were operated by a transverse osteotomy of the proximal tibia of the left leg, fracture was stabilized by intramedullary nailing (healing period 21 days). All therapeutics were applied orally, twice a day. The animals were divided in 4 groups, 10 rats each: Group 1 was treated with placebo, group2 with tramadol (20mg/kg bodyweight/day), group3 with Diclofenac-Colestyramin (5mg/kg/bw./day) over 7 days followed by 14 days placebo, group4 with Diclofenac-Colestyramin (5mg/kg/bw./day) over 21 days. On day 21 the rats were sacrificed and each leg was examined by x-ray, than the tibia was examined by CT-Scan, three-point-bending and histological evaluation. There were no significant differences between group1 and 2 and between group3 and 4, respectively. Therefore the data of group1 and 2 as well as group3 and 4 are put together. The results of CT and 3-point-bending showed, that rats treated by Diclofenac presented with delayed fracture healing compared to those treated by placebo or Tramadol. Bone density was 30% lower (p = 0,0001) in animals treated with Diclofenac (mean = 577mg/ccm, SD:53,1 in group1 and 2 vs. mean = 404,3mg/ccm, SD:27,3 in group3 and 4). The breaking force was 45% (p = 0,0009) lower (mean = 42,4N, SD:14,2 vs. mean = 23,3N, SD:8,2) and the bending stiffness 56% (p = 0,0039) lower (mean = 1218,9Nmm/mm, SD:477,9 vs. mean = 532,6Nmm/mm, SD:389,9) in animals, treated with diclofenac. Diclofenacserumlevels on day 21 in rats with longtime diclofenac application (mean = 242ng/ml, SD:47,7) were comparable to those in humans. Oral application of Diclofenac significantly delayed fracture healing in rats. This effect might be comparable to other NSAR and fracture healing in humans.
We studied the effect of full and partial weight-bearing on venous peak velocity in the legs of 73 subjects. We used colourflow Duplex ultrasound to determine the minimal amount of weight-bearing required to produce the same venous peak velocity as full weight-bearing. We found that the venous peak velocity remains the same in the femoral vein during partial weight-bearing (196 N and above). This is important for postoperative physiotherapy and thrombo-prophylaxis. The median peak velocity was 30 cm/s. This corresponds to an amplification factor of four in relation to the individual resting level (peak velocity). In addition, we found that partial weight-bearing at 196 N can reliably be reproduced. The median value of partial weight-bearing after a three-day training programme was 206 N.
The treatment of large bony defects by callus distraction is well accepted, but the duration of treatment is long and the rate of complications increases accordingly. We have examined the effect of the stiffness of the axial fixator on reducing the time for maturation of callus. We created a mid-diaphyseal defect of 15 mm in the metatarsal bone in sheep and stabilised it with a ring fixator. After four days a bony segment was transported for 16 days at 1 mm per day. After 64 days the animals were divided into four groups, three with axial interfragmentary movement (IFM) of 0.5, 1.2 and 3.0 mm, respectively, and a control group. The 3.0 mm IFM group had the smallest bone density (p = 0.001) and area of callus and the largest IFM after 12 weeks; it also had typical clinical signs of hypertrophic nonunion. The most rapid stiffening of the callus was in the 0.5 mm group which had the smallest IFM (p = 0.04) after 12 weeks and radiological signs of bridging of the defect. These results indicate that suitable dynamic axial stimulation can enhance maturation of distraction callus when the initial amplitude is small, but that a large IFM can lead to delayed union.
Corrective osteotomies are often planned and performed on the basis of normal anatomical proportions. We have evaluated the length and torsion of the segments of the lower limb in normal individuals, to analyse the differences between left and right sides, and to provide tolerance figures for both length and torsion. We used CT on 355 adult patients and measured length and torsion by the Ulm method. We excluded all patients with evidence of trauma, infection, tumour or any congenital disorder. The mean length of 511 femora was 46.3 ± 6.4 cm (±2 In 505 femora the mean internal torsion was 24.1 ± 17.4°, and in 504 tibiae the mean external torsion was 34.9 ± 15.9°. For 352 lower limbs the mean external torsion was 9.8 ± 11.4°. The mean torsion angle of right and left femora in individuals did not differ significantly, but mean tibial torsion showed a significant difference between right (36.46° of external torsion) and left sides (33.07° of external torsion). For the whole legs torsion on the left was 7.5 ± 18.2° and 11.8 ± 18.8°, respectively (p <
0.001). There was a trend to greater internal torsion in femora in association with an increased external torsion in tibiae, but we found no correlation. The 99th percentile value for the difference in 172 paired femora was 13°; in 176 pairs of tibiae it was 14.3° and for 60 paired lower limbs 15.6°. These results will help to plan corrective osteotomies in the lower limbs, and we have re-evaluated the mathematical limits of differences in length and torsion.