Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 88 - 88
1 Apr 2018
Khalaf K Nikkhoo M Parnianpour M Bahrami M Cheng CH
Full Access

Clinical investigations show that the cervical spine presents wide inter-individual variability, where its motion patterns and load sharing strongly depend on the anatomy. The magnitude and scope of cervical diseases, including disc degeneration, stenosis, and spondylolisthesis, constitute serious health and socioeconomic challenges that continue to increase along with the world”s growing aging population. Although complex exact finite element (FE) modeling is feasible and reliable for biomechanical studies, its clinical application has been limited as it is time-consuming and constrained to the input geometry, typically based on one or few subjects. The objective of this study was twofold: first to develop a validated parametric subject-specific FE model that automatically updates the geometry of the lower cervical spine based on different individuals; and second to investigate the motion patterns and biomechanics associated with typical cervical spine diseases. Six healthy volunteers participated in this study upon informed consent. 26 parameters were identified and measured for each vertebra in the lower cervical spine from Lateral and AP radiographs in neutral, flexion and extension viewpoints in the standing position. The lower cervical FE model was developed including the typical vertebrae (C3-C7), intervertebral discs, facet joints, and ligaments using ANSYS (PA, USA). In order to validate the FE model, the bottom surface of C7 was fixed, and a 73.6N preload together with a 1.8 N.m pure moment were input into the model in both flexion and extension. The results were compared to experimental studies from literature. Disc degeneration disease (DDD) was used as an example, where the geometry of C5-C6 disc was changed in the model to simulate 3 different grades of disc degeneration (mimicking grades 1 to 3), and the resulting biomechanical responses were evaluated. The average ranges of motion (ROM) were found to be 4.84 (±0.73) degrees and 5.36 (±0.68) degrees for flexion and extension for C5-C6 functional unit, respectively, in alignment with literature. The total ROM of the model with disc generation grades 2 and 3 was found to have decreased significantly as compared to the intact model. In contrast, the axial stresses on the degenerated discs were significantly higher than the intact discs for all 3 degeneration grades. Our preliminary results show that this novel validated subject-specific FE model provides a potential valuable tool for noninvasive time and cost effective analyses of cervical spine biomechanical (kinematic and kinetic) changes associated with various diseases. The model also provides an opportunity for clinicians to use quantitative data towards subject-specific informed therapy and surgical planning. Ongoing and future work includes expanding the studied population to investigate individuals with different cervical spine afflictions.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 36 - 36
1 Apr 2018
Khalaf K Nikkhoo M Parnianpour M Bahrami M Khalaf K
Full Access

Worldwide, osteoporosis, causes more than 8.9 million fractures annually, resulting in an osteoporotic fracture every 3 seconds, where 1 in every 3 women and 1 in every 5 men aged over 50 will experience osteoporotic fractures at least once in their lifetime. Vertebral fractures, estimated at 1.4 million/year are among the most common fractures, posing enormous health and socioeconomic challenges to the individual and society at large. Considering that the great majority of individuals at high risk (up to 80%), who have already had at least one osteoporotic fracture, are neither identified nor treated, prediction of the risk factors for vertebral fractures can be of great value for prevention/early diagnosis. Recent studies show that finite element analysis of computed tomography (CT) scans provides noninvasive means to assess fracture risk and has the potential to be clinically implemented upon proper validation. The objective of this study was to develop a voxel-based finite element model using quantitative computed tomography (QCT) images in conjunction with in-vitro experiments to evaluate the strength of the vertebral bodies and predict the fracture risk criteria. A total of 10 vertebrae were dissected from juvenile sheep lumbar spines. The attached soft tissues and posterior elements and facet joints were completely removed, and the upper and lower vertebral bodies were polished using glass paper to provide smooth surfaces. The specimens were wrapped in phosphate buffer saline (PBS) soaked gauze, sealed in plastic bags, and stored in a refrigerator at −22°C. QCT scans of the specimens were captured using a bone density calibration phantom (QRM Co., Moehrendorf, Germany) with three 18 mm cylindrical inserts, providing 0, 100 and 200 mg HA/ccm, respectively. All the specimens, preserved hydrated in PBS solution, were mechanically tested at room temperature using a mechanical testing apparatus (Zwick/Roell, Ulm-Germany). The QCT images were then used to reconstruct the voxel-based FE model employing a custom-developed heterogeneous material mapping code. Five different equations for the correlation of the density and the elastic modulus were used to validate the efficiency of the FE model as compared to the in-vitro experiments. The results of the voxel-based FE models matched well with the in-vitro experiments, with an average error of 11.38 (±4.09)% based on the power law equation. A failure criterion was embedded in the FE models and the initiation of fracture was successfully predicted for all specimens. Further, typical kyphoplasty treatment was simulated in the 5 models to evaluate the application of the validated algorithm in the estimation of the failure patterns. Our novel voxel-based FE model can be used in future studies to predict the outcome of different types of therapeutic modalities/surgeries and estimate fracture risk including postoperative fractures.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 122 - 122
1 Jan 2017
Khalaf K Nikkhoo M Kargar R Najafzadeh S
Full Access

Low back pain (LBP) is the leading cause of disability worldwide, interfering with an individual's quality of life and work performance. Understanding the degeneration mechanism of the intervertebral disc (IVD), one of the key triggers of LBP, is hence of great interest. Disc degeneration can be mimicked in animal studies using the injection of enzymatic digestion, needle puncture, stab injury, or mechanical over-loading [1]. However, the detailed response of the artificial degenerated disc using needle puncture under physiological dynamic loading in diurnal activities has not yet been analyzed using FE-models. To fill the gap in literature, this study investigates the role of needle puncture injury on the biomechanical response of IVD using a combination of Finite Element (FE) simulations and in-vitro lumbar spine sheep experiments.

16 lumbar motion segments (LMS) were dissected from juvenile sheep lumbar spines. The harvested LMSs were assigned equally to two groups (control group with no incision and an injured group punctured with a 16-gauge needle). All specimens were mounted in a homemade chamber filled with saline solution and underwent a stress-relaxation test using a mechanical testing apparatus (Zwick/Roell, Ulm-Germany). A validated inverse poroelastic FE methodology [2] in conjunction with in-vitro experiments were used to find the elastic modulus and permeability. Subsequently, specimen-specific FE models for the 16 discs were simulated based on daily dynamic physiological activity (i.e., 8h rest followed by a 16h loading phase under compressive loads of 350 N and 1000 N, respectively).

The results of the individual FE models were well fitted with the in-vitro stress-relaxation experiments, with an average error of 7.48 (±2.24)%. The results of the simulations demonstrated that the variation of axial displacement in the control discs was significantly higher than the injured ones (P=0.037). At the end of day, the intradiscal pressure (IDP) was slightly higher in the control group (P=0.061) although the maximum axial stress in the annulus fibrosus (AF) was significantly higher in the injured group (P=0.028). The total fluid loss after 24h was significantly higher in the control group (p<0.001).

We found that needle puncture can decrease the strain range, IDP, and fluid loss in an IVD, although it increases the axial stress. We therefore hypothesize that the fissures, clefts or tears produced by needle puncture alter the saturation time for disc deformation and pore pressure. The collapsed disc structure hinders the fluid flow capability; hence, the total fluid loss decreases for the injured discs, inhibiting the transportation of nutrients. Higher stresses in the AF were observed for the injured group in alignment with previous studies [3]. It is therefore concluded that the needle puncture injury methodology can be effectively used to mimic the degeneration mechanism in animal models. It is a convenient, reproducible, and cost-effective technique. Future work includes exploring degenerated disks induced by needle puncture to investigate potential regenerative therapeutics.