Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 6 - 6
1 Apr 2022
Moore D Noonan M Kelly P Moore D
Full Access

Introduction

Angular deformity in the lower extremities can result in pain, gait disturbance, deformity and joint degeneration. Guided growth modulation uses the tension band principle with the goal of treatment being to normalise the mechanical axis. To assess the success of this procedure we reviewed our results in an attempt to identify patients who may not benefit from this simple and elegant procedure.

Materials and Methods

We reviewed the surgical records and imaging in our tertiary children's hospital to identify all patients who had guided growth surgery since 2007. We noted the patient demographics, diagnosis, peri-operative experience and outcome. All patients were followed until skeletal maturity or until metalwork was removed.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_10 | Pages 23 - 23
1 Jul 2014
McGoldrick NP Olajide K Noel J Kiely P Moore D Kelly P
Full Access

Our aim was to use CT Scanogram to evaluate fibular growth, and thus calculate normal growth velocity, which may aid in determining the timing of epiphysiodesis.

Current understanding of normal lower limb growth and growth prediction originates in the work of Anderson et al published in the 1960s. There now exist several clinical and mathematical methods to aid in the treatment of leg length discrepancy, including the timing of epiphysiodesis. Early research in this area provided limited information on the growth of the fibula. It is now well recognized that abnormal growth of paired long bones may evolve into deformity of clinical significance. Existing work examining fibular growth used plain film radiography only. Computed Tomography (CT) scanogram is now the preferred method for evaluating leg length discrepancy in the paediatric population. We calculated fibular growth for 28 children (n = 28, 16 girls and 12 boys) presenting with leg length discrepancy to our unit. Mean age at presentation was 111.1 months (range 33 – 155 months). For inclusion, each child had to have at least five CT scanograms performed, at six monthly intervals. Fibular length was calculated digitally as the distance from the proximal edge of the proximal epiphysis to the most distal edge of the distal epiphysis. For calculation purposes, mean fibular length was determined from two measurements taken of the fibula. A graph for annual fibular growth was plotted and fibular growth velocity calculated.

CT Scanogram may be used to calculate normal fibular growth in children presenting with leg length discrepancy.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_10 | Pages 26 - 26
1 Jul 2014
O'Neill B Burke N Moore D Kelly P
Full Access

The purpose of this study was to review the outcomes of four children with genu valgum secondary to Hurler Syndrome treated with circular external fixators (frames) for angular correction.

We retrospectively reviewed the medical and radiographic records of four children with Hurler Syndrome and genu valgum treated with frames. Three children had simultaneous bilateral tibial corrections. The fourth child had unilateral femoral correction. The mean age of the children was 14 years at application of frame. Mean duration of frame was 113 days for the tibial frames, and the femoral frame remained in-situ for 150 days. Correction was assessed clinically, and radiologically with x-rays and CT scannograms, with excellent results in all four cases. The complexities of each individual case necessitated specific and individualised treatment for each child. Complications included further deformities arising in treated and un-treated long-bones both during and after application of frame.

Prior to the introduction of bone marrow transplantation, the average life expectancy of children with Hurler Syndrome was seven years. With bone marrow transplantation, affected children are now living much longer, and many develop characteristic long bone deformities in their lower limbs. These deformities are progressive and can be multifocal and polyostotic. Managament can be extremely challenging, and prior reports of management with hemiepiphysiodesis with staples and 8-plates have been mixed. We believe that this is the first series of circular frame lower limb reconstruction in children with Hurler Syndrome. The flexibility and adaptability of frames confers a unique advantage in the management of these complex deformities.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 145 - 145
1 Sep 2012
Green C O'Rourke D Courtis P Fitzpatrick D Kelly P
Full Access

The management of the dysplastic hip represents a clinical and a technical challenge to the paediatric orthopaedic surgeon. There is a great deal of variation in the degree and direction of acetabular dysplasia. Preoperative planning in the dysplastic hip is still largely based on plain radiographs. However, these plain films are a 2D projection of a 3D structure and measurement is prone to inaccuracy as a result. Hip arthrography is used in an attempt to analyse the 3D morphology of the hip. However, this still employs a 2D projection of a 3D structure and in addition has the risk of general anaesthesia and infection. Geometrical analysis based on multiplanar imaging with CT scans has been shown to reduce analysis variability. We present a system for morphological analysis and preoperative of the paediatric hip using this model. Our system can be used to determine the most appropriate osteotomy based on morphology. This system should increase the accuracy of preoperative planning and reduce the need for arthrography.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 48 - 48
1 May 2012
Moroney P Noel J Fogarty E Kelly P
Full Access

Congenital Talipes Equinovarus (CTEV) occurs in approximately 1 in 1000 live births. Most cases occur as an isolated birth defect and are considered idiopathic. The widespread adoption of the Ponseti technique of serial casting followed by Achilles tenotomy and long term bracing has revolutionised the outcomes in CTEV. In most cases, plantigrade, flexible, pain-free feet may be produced without the need for extensive surgery. It is estimated that about 10% of cases of CTEV are not idiopathic. These feet are stiffer and more challenging to treat. In particular, there is little evidence in the literature concerning the efficacy of the Ponseti method in these cases.

In our institution, a dedicated weekly Ponseti clinic has operated since 2005. To date 140 patients have been treated. We prospectively enter all details regarding their management onto an independent international database.

The aim of this study was to audit the non-idiopathic cases of CTEV and to assess the effectiveness of the Ponseti technique in these challenging cases. Outcome measures included the Pirani score and eventual need for surgical intervention.

We identified 29 cases (46 feet) with non-idiopathic CTEV. This comprises 21% of our workload. Seventeen were bilateral. The commonest diagnoses were neuromuscular conditions such as spina bifida (5 cases) and cerebral palsy (3 cases). There were 4 cases of Trisomy 21. Other causes included Nail Patella syndrome, Moebius syndrome, Larsen syndrome and Ito syndrome. In approximately 12% of cases, the underlying disorder remained undiagnosed despite thorough medical and genetic testing.

In cases of non-idiopathic CTEV, the mean starting Pirani score was 5.5 (out of 6). After serial casting and Achilles tenotomy, the average score was 2.0. Twenty-one of 46 feet (46%) ultimately required further surgical intervention (mostly posteromedial release). We found that certain conditions were more likely to be successfully treated with the Ponseti method – these included conditions characterised by ligamentous laxity such as Trisomy 21 and Ehlers Danlos syndrome. All patients showed some improvement in Pirani score after serial casting.

We believe that it is essential to attempt the Ponseti method of serial casting in all cases of CTEV. More than half of all non-idiopathic cases will not require further surgical intervention – and those that do are not as stiff thanks to the effects of serial casting. Thus, the surgery required is not as complex as it might otherwise have been. This is the largest series of its kind in the current medical literature.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 61 - 61
1 Feb 2012
Quinlan J Watson R Kelly P O'Byrne J Fitzpatrick J
Full Access

Patients with spinal cord injuries have been seen to have increased healing of attendant fractures. This for the main has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear.

This paper evaluates two groups with spinal column fractures – those with neurological compromise (n=10) and those without (n=15), and compares them with a control group with isolated long bone fractures (n=12). Serum was taken from these patients at five specific time intervals post injury (1 day, 5 days, 10 days, 42 days (6 weeks) and 84 days (12 weeks)). These samples were then analysed for levels of Transforming Growth Factor-Beta (TGF-β using the ELISA technique. This cytokine has been shown to stimulate bone formation after both topical and systemic administration.

Results show TGF-β levels of 142.79+/-29.51 ng/ml in the neurology group at 84 days post injury. This is higher than any of the other time points within this group (p=0.009 vs. all other time points, ANOVA). Furthermore, this level is also higher than the levels recorded in the no neurology (103.51+/-36.81 ng/ml) and long bone (102.28=/-47.58 ng/ml) groups at 84 days post-injury (p=0.009 and p=0.04 respectively, ANOVA).

In conclusion, the results of this work, carried out for the first time in humans, offers strong evidence of the causative role of TGF-β in the increased bone turnover and attendant complications seen in patients with acute spinal cord injuries.