A disturbing prevalence of painful inflammatory reactions has been reported in metal-on-metal (MoM) hip resurfacing arthroplasty. A contributing factor is localized loading of the acetabular shell leading to “edge wear” which is often seen after precise measurement of the bearing surfaces of retrieved components. Factors contributing to edge wear include adverse cup orientation leading to proximity (<10 mm) of the hip reaction force to the edge of the acetabular component. As this phenomenon is a function of implant positioning and patient posture, this study was performed to investigate the occurrence of edge loading during different functional activities as a function of cup inclination and version. We developed a computer model of the hip joint through reconstruction of CT scans of a proto-typical pelvis and femur and virtually implanting a hip resurfacing prosthesis in an ideal position. Using this model, we examined the relationship between the resultant hip force vector and the edge of the acetabular shell during walking, stair ascent and descent, and getting in and out of a chair. Load data was derived from 5 THR patients implanted with instrumented hip prostheses (Bergmann et al). We calculated the distance from the edge of the shell to the point of intersection of the load vector and the bearing surface for cup orientations ranging from 40 to 70 degrees of inclination, and 0 to 40 degrees of anteversion.Introduction:
Methods:
A disturbing prevalence of short-term failures of metal-on-metal (MoM) hip resurfacings has been reported by joint registries. These cases have been primarily due to painful inflammatory reactions and, in extreme cases, formation of pseudotumors within periarticular soft-tissues. The likely cause is localized loading of the acetabular shell leading to “edge wear” which is often seen after precise measurement of the bearing surfaces of retrieved components. Factors contributing to edge wear of metal-on-metal arthroplasties are thought to include adverse cup orientation, patient posture, and the direction of hip loading. The purpose of this study was to investigate the role of different functional activities in edge loading of hip resurfacing prostheses as a function of cup inclination and version. We developed a computer model of the hip joint through reconstruction of CT scans of a proto-typical pelvis and femur and virtually implanting a hip resurfacing prosthesis in an ideal position. Using this model, we examined the relationship between the resultant hip force vector and the edge of the acetabular shell during walking, stair ascent and descent, and getting in and out of a chair. Load data was derived from 5 THR patients implanted with instrumented hip prostheses (Bergmann et al). We calculated the distance from the edge of the shell to the point of intersection of the load vector and the bearing surface for cup orientations ranging from 40 to 70 degrees of inclination, and 0 to 40 degrees of anteversion.Introduction
Methods
Edge loading is a common wear mechanism in Metal-on-Metal (MOM) hip resurfacing and is associated with higher wear rates and the incidence of pseudotumour. The purpose of this study was to develop a method to investigate the contributions of patient, surgical and implant design variables on the risk of edge loading. We created a mathematical model to calculate the distance from the head-cup contact patch to the rim of the cup and used this to investigate the effect of component position, specific design features and patient activity on the risk of edge loading. We then used this method to calculate the contact patch to rim distance (CPRD) for 160 patients having undergone revision of their MOM hip resurfacing in order to identify any possible associations.Introduction
Method