The medial collateral (MCL) length at full extension ranged from −9mm to 11mm and post-operatively was reduced to −16mm and 8mm, (p=0.042). At 90o flexion the length ranged from −3mm to 9mm and postoperatively was reduced to −8mm and 10mm (p=0.025). The lateral collateral (LCL) length at full extension changed from −10mm to 9mm pre-operatively to −13mm and 6mm post-operatively (p=0.011). At 90o flexion the range from −8mm and 9mm pre-operatively changed to − 5mm and 11mm post-operatively (p=0.005). All the above changes correspond to improvement in the post-operative axial alignment.
We included 50 sets of radiographs from 48 patients (17 men and 31 women). The prostheses used were PFC (40) and Scorpio (10) and six of them were navigated and 44 were standard TKR. We compared the difference between the angle of the tibial component with the mechanical axis of the tibia in the long leg image and the angle of the prosthesis with the midline of the visualised tibia in a standard antero-posterior knee view. Statistical analysis was carried out using the student t-test.
26 knees had normal tibial rotation pattern with the tibia rotating internally during knee flexion (mean rotation: 15.5°). In 22 knees (40%) the tibia was rotating internally and then externally as the flexion was progressing (mean rotation: 6.7°). In 7 joints (13%) a reverse tibial rotation was recorded, the tibia was rotating externally in all flexion increments (mean rotation: 2.2°). We also recorded that most of the tibial rotation occurs in the first 0–30° of flexion (70%) p<
0.001.
The movement of a normal knee is a complex of flex-ion-extension, translation and rotational movements. Intracapsular anatomical structures such as ACL, PCL, menisci, the bone anatomy as well as the muscles acting on the knee joint influence the screw home mechanism. We assessed the axial rotation of the tibia during knee flexion in order to better understand the kinematic behavior of osteoarthritic knees. We included 55 consecutive admissions (31 females and 24 males) with diagnosed osteoarthritis of the knee. All records were obtained by consultant orthopaedic surgeons using the trackers and software of a navigation knee replacement system, prior to a knee replacement surgery. All the records were obtained before any soft tissue release. For the statistical analysis we used the Wilcoxon non parametric two sample test. We found that the tibial rotation on knee flexion followed three distinct patterns: a) normal rotation: 26 knees (47%) with average rotation of 15.96° (range: 0.5°–34°). b) mixed internal and external rotation: 22 knees (40%) with average rotation 6.7° (range: 5°–0.5°) and c) reversed rotation: seven knees (13%) with average external rotation of 2.7° (range:1°–4°). Most of the tibial rotation occurs in the first 0–30° of flexion (70%) p<
0.001. Our study confirms that osteoarthritis affects the normal kinematics of the knee joint and also suggests that the observed kinematics follow distinctive patterns.
We studied the change in the axial rotation of the tibia at different levels of knee flexion after Knee Replacement using navigation systems. We reviewed the knee kinematic data of 36 consecutive patients (15 males and 21 females) who underwent elective knee replacement (Scorpio/Stryker) at King’s College Hospital. All data were generated using the navigation TKR trackers and software of a knee replacement system. All preoperative data obtained before any soft tissue release. We studied the tibial rotation at 30°, 60° and 90° of knee flexion. All operations were performed by consultant orthopaedic surgeons. We used the Wilcoxon non parametric two sample test for statistical analysis. The average tibial internal rotation upon knee flexion was 9.4° preoperatively and was reduced to 5.3° (mean 7.3°) post operatively. Most of the change (80%) occurred within the first 30° of flexion (p<
0.001). Postoperatively 38% of the studied knees had the screw home mechanism preserved. 52.7% had a mixed pattern of both internal and external rotation of the tibia and three knees (8%) had a reversed rotation of the tibia. The abnormal screw home pattern was preserved in 16 of the postoperative joints (46%). One knee was found postoperatively with external tibial rotation in all flexion increments. The abnormal pattern of tibial rotation was not improved following a navigation arthroplasty. We found that computer navigated TKR reduces significantly the tibial rotation and the replaced knee joint does not behave as a hinge joint. Pre-existing abnormal tibial rotation patterns were not improved postoperatively.