header advert
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives

Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration.

Methods

MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 37 - 37
1 Apr 2017
Sanghani A Coathup M Samazideh S Kalia P Di Silvio L Blunn G
Full Access

Background

Osteoporosis and bone fractures lead to immobility, chronic pain and high patient care costs. Mesenchymal stem cells (MSCs) from postmenopausal women have a slower growth rate and osteogenic differentiation ability causing lower bone density and reduced fracture healing capacity compared to MSCs from premenopausal women. Cellular movement and relocalisation are necessary for many physiologic properties. Local MSCs from injured tissues and circulating MSCs are involved in fracture healing. Cytokines and chemokines such as SDF-1 and its receptor CXCR4 play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. This study investigated the effect of CXCR4 over-expression on the migration of MSCs from ovariectomised, normal and young rats.

Methods

MSCs were harvested from femora of young, normal and OVX rats, genetically modified to over-express CXCR4and put in a Boyden chamber to establish their migration towards SDF-1. This was compared to the non-transfected stem cells.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 24 - 24
1 Mar 2013
Hardwick T Kalia P Baawa-Ameyaw J Lozano D Sinha J Di Silvio L
Full Access

Introduction

Parathyroid hormone-related peptide (PTHrP) has been shown to be an important regulator of bone remodelling1. The aim of this study was to investigate the effect of the N-terminal domain of PTHrP (1–36) on osteogenic and angiogenic gene expression in human osteoblasts (HOB) and human bone marrow stromal cells (hBMSCs).

Materials and Methods

Primary hBMSC's and HOBs were cultured in standard or osteogenic media with different concentrations of PTHrP, either continuously for 8, 24, 48 h and 9 days, or with 3 cycles of intermittent exposure (24 h with PTHrP, 24 h without) over 6 days. Cell lysates were then processed for analysis of gene expression. Expression of the osteogenic markers runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP) and Collagen 1, and the angiogenic marker; vascular endothelial growth factor (VEGF), were measured.