header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 7 - 7
1 Feb 2012
Malik M Bayat A Jury F Oliver W Kay P
Full Access

The Osteoprotegerin/RANK/RANKL system has been implicated in the biological cascade of events initiated by particulate wear debris and bacterial infection resulting in periprosthetic bone loss around loosened total hip arthroplasties (THA). Individual responses to such stimuli may be dictated by genetic variation and we have studied the effect of single nucleotide polymorphisms (SNPs) within these genes.

We performed a case control study of the Osteoprotegerin, RANK and RANKL genes for possible association with deep sepsis or aseptic loosening. All patients included in the study were Caucasian and had had a cemented Charnley THA and polyethylene acetabular cup. Cases consisted of 91 patients with early aseptic loosening and 71 patients with microbiological evidence at surgery of deep infection. Controls consisted of 150 THAs that were clinically asymptomatic for over 10 years and demonstrated no radiographic features of aseptic loosening. DNA samples from all individuals were genotyped using Taqman allelic discrimination.

The A allele (p<0.001) and homozygous genotype A/A (p<0.001) for the OPG-163 SNP were highly associated with aseptic failure. Additionally, the RANK-575 (C/T SNP) T allele (p=0.004) and T/T genotype (p=0.008) frequencies were associated with aseptic failure. No statistically significant relationship was found between aseptic loosening and the OPG- 245 or OPG-1181 SNPs.

When the septic group was compared to controls, the frequency of the A allele (p<0.001) and homozygous genotype A/A (p<0.001) for the OPG-163 SNP were statistically significant. No statistically significant relationship was found between septic failure and the OPG- 245, OPG-1181 or RANK-575 SNPs.

Aseptic loosening and possibly deep infection of THA may be under genetic influence to candidate susceptibility genes. SNP markers may serve as predictors of implant survival and aid pharmacogenomic prevention of THA failure.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 226 - 226
1 Sep 2005
Malik M Jury F Zeggini E Salway F Platt H Bayat A Ollier W Kay P
Full Access

Aims: Tumour necrosis factor-alpha is a proinflammatory cytokine that has been implicated in the inflammatory response to bacterial infection and wear debris particles around loosened total hip replacements (THR). Individual TNF responses to such stimuli may be dictated by genetic variation and we have studied the effect of single nucleotide polymorphisms (SNPs) within the TNF gene.

Methods: We performed a case control study of 9 SNPs (−1031, −863, −857, −376, −308, −238, +489, +851 and +1304) for possible association with deep sepsis or aseptic loosening. All patients included in the study were Caucasian and had had a cemented Charnley THR. Cases consisted of 44 patients with early aseptic loosening and 30 patients with microbiological evidence at surgery of deep infection. Controls consisted of 85 THRs that were clinically asymptomatic for over 10 years and demonstrated no radiographic features of aseptic loosening. DNA was extracted from venous blood and genotyped by Snapshot assay.

Results: Genotype and allele frequencies for all SNPs were in Hardy-Weinberg equilibrium between THR controls and a random sample of UK Caucasians. A significant association was found for the -863 SNP and aseptic loosening (p< 0.05; OR=2.36; 95% CI: 0.976 – 5.71). A trend towards association was found between the -863A SNP and deep infection (p=0.80; OR=2.42; CI: 0.800 – 7.34).

Conclusions: Genetic polymorphism of TNF-alpha may play a significant role in THR aseptic loosening and possibly in deep infection. SNP markers may serve as predictors of implant survival and response to therapy such as anti-TNF treatment.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 69 - 70
1 Jan 2004
Malik MHA Jury F Salway F Platt H Zeggini E Ollier WER Kay PR
Full Access

Tumour necrosis factor-alpha is a proinflammatory cytokine that has been implicated in the propagation of inflammatory responses to bacterial infection and wear debris particles around loosened total hip replacements (THR). Individual TNF responses to such stimuli may be dictated by genetic variation. Single nucleotide polymorphisms (SNPs) at several loci within the TNF gene are associated with disease severity and susceptibility in a number of inflammatory conditions, but only a few SNPs have been screened in any one study.

14 SNPs have been identified within the TNF gene. Our unit has previously demonstrated that 5 SNPs are monomorphic in a sample group of UK Caucasians. We performed a case control study of the remaining 9 polymorphic positions (−1031, −863, −857, −376, −308, −238, +489, +851 and +1304) for possible association with deep sepsis or aseptic loosening.

All patients included in the study were Caucasian and had had a cemented Charnley THR and polyethylene cup. Cases consisted of 44 patients with early aseptic loosening (defined as that occurring within 6 years of implantation and findings at revision surgery or by the criteria of Hodgkinson et al for the acetabulum and Harris for the femoral stem) and 30 patients with microbiological evidence at surgery of deep infection. Controls consisted of 85 THRs that had remained clinically asymptomatic for over 10 years and demonstrated no radiographic features of aseptic loosening or ‘at risk’ signs as described by Wroblewski et al. DNA was extracted from venous blood and genotyped by Snapshot assay.

Genotype and allele frequencies for all SNPs were in Hardy-Weinberg equilibrium between THR controls and a random sample of UK Caucasians. The most significant associations were between the −238A (p< 0.05) and −863T (p< 0.05) alleles and aseptic loosening. A trend towards association was found between the −863A SNP and deep infection (p=0.80). The −238 A/G and −863 G/T genotypes were associated with deep infection (p< 0.05). No other significant associations were found.

Genetic polymorphism of TNF appears to play a significant role in THR aseptic loosening and possibly in deep infection. SNP markers may serve as predictors of implant survival and response to therapy such as anti-TNF treatment.