header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 49 - 49
1 Feb 2016
d'Entremont AG Jones CE Wilson DR Mulpuri K
Full Access

Perthes disease is a childhood disorder often resulting in femoral head deformity. Categorical/dichotomous outcomes of deformity are typical clinically, however quantitative, continuous measures, such as Sphericity Deviation Score (SDS), are critical for studying interventions. SDS uses radiographs in two planes to quantify femoral head deformity. Limitations of SDS may include non-orthogonal planes and lost details due to projections. We applied this method in 3D, with specific objectives to: 1. Develop SDS-like sphericity measures from 3D data 2. Obtain 2D and 3D sphericity for normal and Perthes hips 3. Compare slice-based (3D) and projection-based (2D) sphericity CT images of 16 normal (8 subjects) and 5 Perthes hips (4 subjects) were segmented to create 3D hip models. Ethics board approval was obtained for this study. SDS consists of roundness error (RE) in two planes and ellipsoid deformation (ED) between planes. We implemented a modified SDS which was applied to (a) orthogonal projections simulating radiographs (sagittal/coronal; 2D-mSDS), and (b) largest radii slices (sagittal/coronal; 3D-mSDS). Mean 2D-mSDS was higher for Perthes (27.2 (SD 11.4)) than normal (11.9 (SD 4.1)). Mean 3D-mSDS showed similar trends, but was higher than 2D (Perthes 33.6 (SD 5.3), normals 17.0 (SD 3.1)). Unlike 2D-mSDS, 3D-mSDS showed no overlap between groups. For Perthes hips, 2D-mSDS was consistent with SDS. For normal hips, 2D-mSDS was higher than expected (similar to Stulberg II). Projection-based (2D) measures may produce lower mSDS due to spatial averaging. Slice-based (3D) measures may better distinguish between normal and Perthes shapes, which may better differentiate effectiveness of treatments.