Assess and characterise the suitability of a novel silk reinforced biphasic 3D printed scaffold for osteochondral tissue regeneration. Biphasic hybrid scaffolds consisted of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene terephthalate)(PEGT/PBT) scaffold frame work (pore size 0.75mm), which has been infilled with a cast and freeze dried porous silk scaffold (5×5×2mm3), in addition to a seamless silk top layer (1mm). Silk scaffolds alone were used as controls. Both the biphasic and control scaffolds were characterised via uniaxial compression testing (strain rate 0.1mm/min), and the potential biocompatibility of the scaffolds was tested via in vitro culture of seeded bone marrow stromal cells post fabrication.Abstract
Objectives
Methods
Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA. We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.Objectives
Methods