To make an inoculum for induction of Implant-Associated Osteomyelitis (IAO) in pigs based on bacterial aggregates resembling those found on the human skin, i.e. aggregates of 5–15 µm with low metabolic activity. The aggregates were evaluated and compared to a standard planktonic bacterial inoculum. The porcine Aim
Method
This study investigated if co-administration of rifampicin with moxifloxacin led to a decrease in moxifloxacin concentrations in relevant tissues in a porcine model of implant-associated osteomyelitis caused 15 female pigs received a stainless-steel implant in the right proximal tibia and were randomized into two groups. Infection was introduced by inoculating the implant with Aim
Method
Several local antibiotic-eluting drug delivery systems have been developed to treat bacterial bone infections. However, available systems have significant shortcomings, including suboptimal drug-release profiles with a burst followed by subtherapeutic release, which may lead to treatment failure and selection for drug resistance. Here, we present a novel injectable, biocompatible, These studies aimed to determine the therapeutic potential of CarboCell formulations for treatment of implant-associated osteomyelitis by mono- and dual antimicrobial therapy. The solubility and stability of several antibiotics were determined in various CarboCell formulations, and Aim
Methods
To develop a new system for antibacterial coating of joint prosthesis and osteosynthesis material. The new coating system was designed to release gentamicin immediately after insertion to eradicate surgical contamination. Steel implants (2×15mm) were coated with a solid nanocomposite xerogel made from silica and the dendritic polymer, hyperbranched polyethyleneimine. The xerogel was anchored inside a porous surface made by pre-coating with titanium microspheres. Finally, gentamicin was encapsulated in the xerogel, i.e. no chemical binding. A total of 50 µg gentamicin was captured into each implant. The efficacy of the new coating was evaluated in a porcine model of implant associated osteomyelitis. In total, 30 female pigs were randomized into 3 study groups (n=10). Group A; plain implants + saline, Group B; plain implants + 104 CFU of Aim
Method
To describe the histopathology of the first and last debrided bone tissue in chronic osteomyelitis and answer the following research question; is the last debrided bone tissue viable and without signs of inflammation? In total, 15 patients with chronic osteomyelitis were allocated to surgical treatment using a one stage protocol including extensive debridement. Suspected infected bone tissue eradicated early in the debridement procedure was collected as a clearly infected sample (S1). Likewise, the last eradicated bone tissue was collected as a suspected non-infected sample (S2), representing the status of the bone void. In all cases, the surgeon debrided the bone until visual confirmation of healthy bleeding bone. The samples were processed for histology, i.e. decalcification and paraffin embedding, followed by cutting and staining with Haematoxylin and Eosin. Immunohistochemistry with MAC-387 antibodies towards the calprotectin of neutrophil granulocytes (NGs) was also performed and used for estimation of a neutrophil granulocyte (NG) score (0, 1, 2 or 3), by the method described for fracture related infections (1).Aim
Method
The liver is the major source of acute phase proteins (APPs) and serum concentrations of several APPs are widely used as markers of inflammation and infection. The aim of the present study was to explore if a local extra hepatic osseous acute phase response occurs during osteomyelitis. The systemic (liver tissue and serum) and local (bone tissue) expression of several APPs during osteomyelitis was investigated with qPCR and ELISA in a porcine model of implant associated osteomyelitis (IAO) at 5, 10 and 15 days after inoculation with S. aureus or saline, respectively. Additionally, samples were also collected from normal heathy pigs and pigs with spontaneous, chronic, haematogenous osteomyelitis. Afterwards, immunohistochemistry towards different upregulated APPs was performed on the porcine osteomyelitis lesions and on bone biopsies from human patients with chronic osteomyelitis.Aim
Method
To conduct a systematic review of non-rodent animal models (rabbit, pig, dog, goat and sheep) of bone infection. In the future, anti-infective technologies aiming to fight bone infections are depending on evaluation in reliable animal models. Therefore, it is highly relevant to evaluate the scientific quality of existing bone infection models. PubMed and Web of Science were searched systematically. To be included in the systematic review, publications had to deal with bacterial inoculation of non-rodent animals in order to model bone infections in humans. Data was extracted on study design Aim
Method
To study the antimicrobial effect of a gentamicin loaded bio-composite bone void filler in relation to a limited or extensive debridement of osteomyelitis lesions, respectively. Nine pigs were inoculated into the right proximal tibial bone with a high virulent gentamicin sensitive strain of Aim
Methods
To investigate the local intra-operative concentration of gentamicin needed to prevent biofilm formation in a porcine model of implant-associated osteomyelitis. In total 24 pigs were allocated to six groups. Group A (n=6) was inoculated with saline. Groups B (n=6), C (n=3), D (n=3), E (n=3) and F (n=4) were inoculated with 10 μL saline containing 104 CFU of Aim
Method
The increasing incidence of orthopaedic In eight pigs, implant-associated osteomyelitis was induced on day 0, using a Aim
Method
Despite the expanding research focusing on bacterial biofilm formation, specific histochemical biofilm stains have not been developed for light microscopy. Therefore, pathologists are often not aware of the presence of biofilm formation when examining slides for diagnosing bacterial infections, including orthopaedic infections. The aim of the present study was to develop a combined histochemical and immunohistochemical biofilm stain for simultaneous visualization of Infected bone tissue was collected from two different porcine models of osteomyelitis inoculated with the biofilm forming Aim
Methods
A reason for treatment failure, in cases of periprosthetic bone infections and osteomyelitis, may be incomplete or heterogeneous tissue distribution of antimicrobials to the affected bone. Decreased bioavailability has been demonstrated in healthy bones but never in pathological bone tissue. Therefore, the aim was to obtain pharmacokinetic parameters of cefuroxime in infected bone tissue by means of microdialysis in a porcine model of implant associated osteomyelitis An implant cavity of 4 mm in diameter was drilled 25 mm into the right tibial bone of ten pigs (30 kg/BW). Subsequently, a small steel implant (K-wire 2 × 2 mm) and 104 CFU of Aim
Method