The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted hypertrophic differentiation of the generated tissue due to endochondral ossification. Continuing on our earlier studies, our goal is to further improve the engineering of hyaline cartilage for the treatment of a cartilage defect in our A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded (n=7) or supplemented (n=7) with 2% (w/v) bovine aggrecan (Sigma-Aldrich). After 14 days, rabbits were euthanised. Generated subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry was performed for key markers of different phases of endochondral ossification.INTRODUCTION
METHODS
The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted ossification of the generated tissue due to endochondral ossification. Our A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded or (n=8) or loaded (n=7) with celecoxib-loaded PGLA microspheres (poly(D,L-lactic acid) microspheres were loaded with 20% (w/w) Celecoxib (Pfizer)). Fourteen days post-injection, rabbits were euthanised. The developed subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry were performed for key markers of different phases of endochondral ossification.INTRODUCTION
METHODS