The use of a mobile bearing has been suggested to decrease the rate of patellar complications after total knee arthroplasty (TKA). However, to resurface or retain the native patella remains debated. Few long-term results have been documented. The present retrospective study was designed to evaluate the long-term (more than 10 years) results of mobile bearing TKAs on a national scale, and to compare pain results and survivorship according to the status of the patella. The primary hypothesis of this study was that the 10 year survival rate of mobile bearing TKAs with patella resurfacing will be different from that of mobile bearing TKAs with native patella retaining. All patients operated on between 2001 and 2004 in all participating centers for implantation of a TKA (whatever design used) were eligible for this study. Usual demographic and peri-operative items have been recorded. All patients were contacted after the 10 year follow-up for repeat clinical examination (Knee Society score (KSS), Oxford knee questionnaire). Patients who did not return were interviewed by phone call. For patients lost of follow-up, family or general practitioner was contacted to obtain relevant information about prosthesis survival. TKAs with resurfaced patella and TKAs with retained native patella were paired according to age, gender, body mass index and severity of the coronal deformation (with steps of 5°). Pain score, KSS and Oxford knee score were compared between two groups with a Student t-test at a 0.05 level of significance. Survival curve was plotted according to the actuarial technique, using the revision for mechanical reason as end-point. The influence of the patella status was assessed with a logrank test at a 0.05 level of significance.OBJECTIVES
METHODS
42 patients have been operated on in the 4 participating centers for an isolated medial osteoarthritis. There were 29 women and 13 men, with a mean age of 65 years. The post-operative coronal and sagittal orientation of both prosthetic components were measured, and the time to get 90° of knee flexion was recorded.
40 patients were operated on for an arthroscopic assisted bone – patellar tendon – bone ACL replacement with an outside-in femoral tunnel. The guide wires were placed according to the standard technique, and their position recorded by the system. The recorded position was compared:
to the conventional radiographic measurement of the position of the tunnels on plain antero-posterior and lateral X-rays, and to the 3D measurement of the position of the tunnels on a CT-scan.
There was no significant difference in the paired absolute values of the mediolateral position of the tibial tunnel or of the antero-posterior position of the femoral tunnel between radiographic and navigated measurements. There was no significant difference in the paired absolute values of the antero-posterior and medio-lateral position of the tibial tunnel or of the antero-posterior position of the femoral tunnel between CT and navigated measurements. Discussion: CT-scan measurement of the positioning of the ACL replacement tunnels is currently the gold standard technique. According to this reference, the antero-posterior position of both the femoral and the tibial tunnels can be accurately assessed by the navigation system used. The X–ray measurement is less accurate and should not be considered as a confident control of the accuracy of the tunnel placement. Summary: The antero-posterior position of both the femoral and the tibial tunnels can be accurately assessed by the system.