header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 145 - 145
1 Feb 2020
Fukunaga M Ito K
Full Access

When a knee flex deeply, the posterior side of thigh and calf contact. The contact force is unignorable to estimate the load acting on a knee because the force generates extensional moment on the knee, and the moment might be about 20–80% of the flexional moment generated by a floor reacting force. Besides, the thigh-calf contact force varies so much even if the posture or the test subject are the same that it is hard to use the average value to estimate the knee load. We have assumed that the force might change not only by the individual physical size but also by a slight change of the posture, especially the angle of the upper body. Therefore we tried to create the estimation equation for the thigh-calf contact force using both anthropometric sizes and posture angles as parameters.

The objective posture was kneeling, both plantarflexing and dorsiflexing the ankle joint. Test subjects were 10 healthy males. They were asked to sit on a floor with kneeling, and to tilt their upper body forward and backward. The estimation equations were created as the linear combinations of the parameters, determining the coefficient as to minimize the root mean square errors. We used the parameters as explanatory variables which could be divided into posture parameters and individual parameters. Posture parameters included the angle of upper body, thigh and lower thigh. Individual parameters included height, weight, axial and circumferential lengths of thigh and lower thigh. The magnitude of the force was normalized by a body weight, and the acting position was expressed by the moment arm length around a knee joint and normalized by a height.

As a result, the adjusted coefficient of determination improved and the root mean square error decreased when using both posture and individual parameters, though there were large errors when neglecting either parameters. The accuracy decreased little when using the same equation for plantarflexed and dorsiflexed kneeling in magnitude. The relation of measured and estimated values of the magnitude and acting position, using the common equation with all the parameters. It might be because the difference of the postures could be described by the inclination angle of a thigh. In both postures, the magnitude of a thigh-calf contact force was mainly affected by the posture and acting position by the individual parameters. When calculating the knee joint load, the errors would be about 8.59 Nm on the knee moment and 290 N on the knee load when using just an average, and they would decrease to 2.23 Nm and 74 N respectively using the estimation equation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 127 - 127
1 Feb 2017
Fukunaga M Morimoto K Ito K
Full Access

Thigh-calf contact force is the force acting on posterior side of the thigh and calf during deep knee flexion. It has been reported the force is important to analyze the kinetics of a lower limb and a knee joint. Some previous researches reported the measured thigh-calf contact force, however, the values varied among the reports. Furthermore, the reports indicated that there were large variations even in a single report. One of the reports tried to find the relationship between the magnitude of thigh-calf contact force and anthropometric measurement as height, weight or perimeter of the lower limb, however, there could not found clear correlations. We considered that the cause of the variations might be the difference of the posture. At heel-rise squatting posture, we can bend or stand upright the upper body. Therefore we tried to create the equation to estimate the thigh-calf contact force by multiple regression analysis, using the anthropometric and posture parameters as explanatory variables.

We performed the experiment to measure thigh-calf contact force, joint angles and anthropometric information. Test subjects were 10 healthy male. First we measured their height, weight, perimeter of the thigh and muscle mass of the legs and whole body. Muscle mass was measured by body composition meter (BC-118E, Tanita Co., Japan). Then, test subjects were asked to squat with their heels lifted and with putting the pressure distribution sensor between thigh and calf. And they bent their upper body forward and backward. The pressure sensor to be used was ConfroMat System (Nitta Co., Japan). After that, we measured the joint angles of the hip, knee and ankle, and the angle between the floor and upper body using the videos taken during the experiment. Then, we created the equation to estimate the thigh-calf contact force by linear combination of the anthropometric values and joint angles. The coefficients were settled as to minimize the average error between measured and estimated values.

Results are shown in Fig.1. Forces were normalized by the body weight of the test subjects. Because the horizontal axes show the measured and vertical axis show the estimated values, the estimation is accurate when the plots are near the 45-degree line. Average error was 0.11BW by using only physical values, 0.15BW by angles and 0.06BW using both values. And the maximum error was 0.69BW, 0.43BW and 0.32BW respectively. Thus we could estimate the thigh-calf contact force by multiple regressions, using both physical parameters and angles to indicate the posture. Using the equation, we would be able to analyze the kinetics of a lower limb by physical and motion measurement. Our future work might be increasing the number of subjects to consider the appropriateness, because the test subjects of this study were very limited.