header advert
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 56 - 56
1 Apr 2018
Nishitani K Ishikawa M de Mesy Bentley K Ito H Matsuda S Daiss J Schwarz E
Full Access

INTRODUCTION

Staphylococci species account for ∼80 % of osteomyelitis cases. While the most severe infections are caused by Staphylococcus aureus (S. aureus), the clinical significance of coagulase negative Staphylococcus epidermidis (S. epidermidis) infections remain controversial. In general, S. epidermidis was known to be a protective commensal bacterium. However, recent studies have shown that intra-operative low-grade S. epidermidis contamination prevents bone healing. Thus, the purpose of this study is to compare the pathogenic features of S. aureus and S. epidermidis in an established murine model of implant-associated osteomyelitis.

METHODS

All animal experiments were performed on IACUC approved protocols. USA300LAC (MRSA) and RP62A(S. epidermidis) were used as prototypic bacterial strains. After sterilization, stainless steel pins were implanted into the tibiae of BALB/c mice (n=5 each) with or without Staphylococci. Mice were euthanized on day 14, and the implants were removed for scanning electron microscopy (SEM). Tibiae were fixed for mCT prior to decalcification for histology.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 341 - 341
1 Jul 2014
Ito H Fujii T Kasahara T Ishikawa M Furu M Shibuya H Matsuda S
Full Access

Summary Statement

In articular cartilage defects, chemokines are upregulated and potentially induce the migration of bone marrow cells to accelerate the healing processes.

Introduction

The treatment of damaged articular cartilages is one of the most challenging issues in sports medicine and in aging societies. In the microfracture technique for the treatment of articular cartilage defects, bone marrow cells are assumed to migrate from the bone marrow. Bone marrow cells are well-known for playing crucial roles in the healing processes, but how they can migrate from underlying bone marrow remains to be investigated. We have previously shown that SDF-1, one of chemokines, play crucial roles in the recruitment of mesenchymal stem cells in bone healing processes, and the induction of SDF-1 can induce a successful bone repair. If the migration can be stimulated by any means in the cartilage defects, a better result can be expected. The aim of this study was to elucidate the mechanisms of the migration of bone marrow cells and which factors contribute to the processes.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 209 - 209
1 Jul 2014
Ishikawa M Ito H Yoshitomi H Murata K Shibuya H Furu M Kitaori T Nakamura T Matsuda S
Full Access

Summary Statement

MCP-1/ CCR2 axis at the early phase plays a pivotal role in the fracture healing. Inflammation plays a pivotal role in fracture healing. Among them, chemokines play key roles in inflammation. Monocyte chemotactic protein-1 (MCP-1), via its receptor C-C chemokine receptor 2 (CCR2), acts as a potent chemoattractant for various cells to promote migration from circulation to inflammation site. Thus, the importance of MCP-1/CCR2 axis in fracture healing has been suggested. However, the involvement of MCP-1/CCR2 axis tofracture site is not fully elucidated.

Results

PCR Array: The expression of MCP-1 and MCP-3 had increased on day 2 than 0 or 7 in the rib fracture healing. Immunohistochemistry Staining: To verify the localization of MCP-1 expression, we examined the Wild type (WT)-mouse rib fracture healing. We observed high expression of MCP-1 and MCP-3 at the periosteum and the endosteum on post-fracture day 3. In vivo Antagonist Study: To elucidate whether MCP-1/CCR2 axis is involved during the early phase of fracture healing, we continuously administered RS102895, CCR2 antagonist, before or after rib fracture. Micro-CT analysis showed delayed fracture healing in the before-group compared with both the control and after-group. On day 21, the hard callus volume in the before-group was significantly smaller than that in the control-group. Histological analysis showed that fractures in both the control and the after-groups were healed by day 21. In contrast, less of cartilage in the callus was observed in the before-group on day 7. Gain of Function: To examine the roles of MCP-1 at the periosteum and the endosteum during the fracture healing, we created a segmental bone graft exchanging model. The bone grafts were transplanted from MCP-1−/− mice to another MCP-1−/− mice (KO-to-KO). Micro-CT analysis showed that KO-to-KO transplantation led to the delay of fracture healing on day 21. Next, we created exchanging-bone graft models between MCP-1−/− and WT mice, in which a segmental bone derived from a WT mouse was transplanted into a host MCP-1−/− mouse (WT-to-KO). In contrast to KO-to-KO bone graft transplantation, the transplantation of WT-derived graft into host KO mouse resulted in a significant increase of new bone formation on day 21. Histological analysis revealed that marked and localised induction of MCP-1 expression in the periosteum and the endosteum around the WT-derived graft was observed in the host MCP-1−/− mouse. Loss of Function: To validate whether MCP-1 is a crucial chemokine for fracture healing, we created WT-to-WT and KO-to-WT bone graft models. When WT-donor graft was transplanted into WT-host, abundant new bone formation was observed around a WT-derived graft on day 21. In contrast, transplantation of KO-derived graft into WT-host resulted in a marked reduction of periosteal bone formation on a donor graft.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1606 - 1613
1 Nov 2010
Oshima S Ishikawa M Mochizuki Y Kobayashi T Yasunaga Y Ochi M

We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated.

This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 823 - 829
1 Jun 2009
Adachi N Motoyama M Deie M Ishikawa M Arihiro K Ochi M

We evaluated the histological changes before and after fixation in ten knees of ten patients with osteochondritis dissecans who had undergone fixation of the unstable lesions. There were seven males and three females with a mean age of 15 years (11 to 22). The procedure was performed either using bio-absorbable pins only or in combination with an autologous osteochondral plug. A needle biopsy was done at the time of fixation and at the time of a second-look arthroscopy at a mean of 7.8 months (6 to 9) after surgery.

The biopsy specimens at the second-look arthroscopy showed significant improvement in the histological grading score compared with the pre-fixation scores (p < 0.01). In the specimens at the second-look arthroscopy, the extracellular matrix was stained more densely than at the time of fixation, especially in the middle to deep layers of the articular cartilage.

Our findings show that articular cartilage regenerates after fixation of an unstable lesion in osteochondritis dissecans.