Post-operative (postop) lower limb alignment in unicompartmental knee arthroplasty (UKA) has been reported to be an important factor for postop outcomes. Slight under-correction of limb alignment has been recommended to yield a better clinical outcomes than neutral alignment. It is useful if the postop limb alignment can be predicted during surgery, however, little is known about the surgical factors affecting the postop limb alignment in UKA. The purpose of this study was to examine the influence of the medial tibial joint line elevation on postop limb alignment in UKA. Seventy-four consecutive medial UKAs were enrolled in this study. All the patients received a conventional fixed bearing UKA. Pre-operative (preop) and postop limb alignment was examined using long leg radiograph and lower limb alignment changes were calculated. Femoral and tibial osteotomy thickness were measured during surgery. Medial tibial joint line change was defined as polyethylene thickness minus tibial osteotomy thickness and sawblade thickness (1.27mm). Positive values indicated a tibial joint line elevation. Medial femoral joint line change was defined as femoral distal component thickness (6.5mm) minus femoral distal osteotomy thickness and sawblade thickness. Positive values indicated a femoral joint line reduction. Medial joint distraction width was also calculated by tibial joint line elevation plus femoral joint line reduction. The correlation of lower limb alignment change with polyethylene insert thickness, the medial tibial joint line elevation, femoral joint line reduction, or joint distraction width were analyzed.Background
Methods
Range of motion (ROM) is one of the important factor for better functional outcome after total knee arthroplasty (TKA). In posterior cruciate ligament (PCL) retaining (CR) TKA, adequate PCL function is suggested to be important for better kinematics and ROM. However, intraoperative assessment of PCL function is relatively subjective, thus more objective evaluation is required to improve the functional outcomes after TKA. In clinical practice, tibial posterior sagging sign is well known to indicate PCL deficiency. Hence, we hypothesized that intraoperative femorotibial antero-posterior (AP) changes at 90° of flexion indirectly reflected the PCL function and associated with postoperative maximum flexion angles in CR TKA. The purpose of this study was to investigate the correlation between intraoperative femorotibial AP changes at 90° of flexion and postoperative maximum flexion range in navigated CR TKA. Between March 2014 and March 2015, forty patients with varus osteoarthritis underwent primary TKA. All of the cases were using same types of implant (Triathlon; Stryker Orthopedics, Mahwah, NJ, USA), with an image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker). PCL was retained and cruciate substituting (CS) inserts were used in all cases. The mean age at the time of surgery was 71.7 ± 6.8 years old (ranging: 62 – 85). The mean follow-up was 10.9 ± 6.4 months. After minimum release of medial and lateral soft tissue, resection of anterior cruciate ligaments, and protection of PCL, registration and kinematic measurements were performed prior to bone resection. The kinematic measurements were performed again after implantation. The center of proximal tibial and distal femur were defined during registration. The point of proximal tibia was projected to the mechanical axis of femur and the distance between the projected point and the distal femur at 90° of flexion were measured and defined as femorotibial AP position. Distal relative to the center of distal femur indicates as minus, and proximal relative to the point indicates as plus. The correlation between the intraoperative changes of AP position and postoperative maximum flexion angles were investigated.Introduction
Methods
Recently, kinematic aligned total knee arthroplasty (TKA) has gained interest for achieving better clinical outcomes over mechanical aligned TKA. The primary goal of kinematic aligned TKA is to position the femoral and tibial components so that the angles and levels of the distal and posterior femoral joint lines and the tibial joint line are each restored to the patient's natural alignment, and not to a neutral limb alignment that is unnatural for most patients. Despite good clinical outcomes reported at short to mid-term follow-up, surgeons should know reasons why this method is useful and safe surgery and carefully assess the long-term outcomes until this new technique is settled as standardized procedure for TKA. The main purpose of the present study was to compare postoperative radiography and clinical scores following kinematic and mechanical aligned TKA. Sixty TKAs—30 kinematic and 30 mechanical aligned—were performed in patients with varus-type osteoarthritis using a navigation system. Using postoperative double-leg and single-leg standing long leg radiographs, joint line orientation angle to the floor, conventional mechanical axis (cMA), and true mechanical axis (tMA; line from hip center to the lowest point of calcaneus) were compared between the two groups. One-year after surgeries, range of motion and the patient-derived score of the 2011 Knee Society Score (2011 KSS), which includes four categories: symptoms, patient satisfaction, patient expectations, and functional activities, e.g., walking/standing, standard activities, advanced activities, and discretionary activities, were compared between the two groupsPurpose
Methods
Total knee arthroplasty (TKA) is a successful technique for treating painful osteoarthritic knees. However, the patients' satisfaction is not still comparable with total hip arthroplasty. Basically, the conditions with operated joints were anterior cruciate ligament (ACL) deficient knees, thus, the abnormal kinematics is one of the main reason for the patients' incomplete satisfaction. Bi-cruciate stabilized (BCS) TKA was established to reproduce both ACL and posterior cruciate ligament (PCL) function and expected to improve the abnormal kinematics. However, there were few reports to evaluate intraoperative kinematics in BCS TKA using navigation system. Hence, the aim in this study is to reveal the intraoperative kinematics in BCS TKA and compare the kinematics with conventional posterior stabilized (PS) TKA. Twenty five consecutive subjects (24 women, 1 men; average age, 77 years; age range, 58–85 years) with varus osteoarthritis undergoing navigated BCS TKA (Journey II, Smith&Nephew) were enrolled in this study. An image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker) was used for the operation. Registration was performed after minimum medial soft tissue release, ACL and PCL resection, and osteophyte removal. Then, kinematics including tibiofemoral rotational angles from maximum extension to maximum flexion were recorded. The measurements were performed again after implantation. We compared the kinematics with the kinematics of paired matched fifty subjects who underwent conventional posterior stabilized (PS) TKA (25 subjects with Triathlon, Stryker; 25 subjects with PERSONA, ZimmerBiomet) using navigation statistically.PURPOSE
Materials and Methods
The influence of amount of tibial posterior slope changes on joint gap and postoperative range of motion was investigated in 35 patients undergoing unicompartmental knee arthroplasty (UKA). Component gap between the medial tibial osteotomy surface and the femoral trial prosthesis was measured throughout the range of motion using a tensor. The mean tibial posterior slope decreased from 10.2 to 7.3 degrees. Increased tibial slope change was positively correlated with component gap differences of 90° −10°, 120° −10°, and 135° −10° and negatively correlated with postoperative extension angle. Increasing tibial slope should be avoided to achieve full extension angle after UKA.
To investigate the tibiofemoral rotational profiles during surgery in navigated posterior-stabilized (PS) total knee arthroplasty (TKA) and investigated the effect on postoperative maximum flexion angles. At first, twenty-five consecutive subjects (24 women and 1 man; age: mean, 77 years; range, 58–85 years) with varus osteoarthritis treated with navigated PS TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. Kinematic parameters, including the tibiofemoral rotational angles from maximum extension to maximum flexion, were recorded thrice before and after PCL resections, and after implantation. The effect of PCL resection and component implantation on tibiofemoral rotational kinematics was statistically evaluated. Then, the effect of tibiofemoral rotational alignment changes on the postoperative maximum angles were retrospectively examined with 96 subjects (84 women, 12 men; average age, 76 years; age range, 56–88 years) who underwent primary TKA.Purpose
Materials and Methods
The influence of soft tissue balance in mobile-bearing posterior-stabilized (PS) total knee arthroplasty (TKA) on the patellofemoral (PF) joint was investigated in thirty varus-type osteoarthritis patients. Intraoperative soft tissue balance including joint component gap and varus/valgus ligament balance and the medial/lateral patellar pressure were measured throughout the range of motion after the femoral component placement and the PF joint repair. The lateral patellar pressure, which was significantly higher than the medial side in the flexion arc, showed inverse correlation with the lateral laxity at 60° and 90° of flexion. The lateral patellar pressure at 120° and 135° of flexion also inversely correlated with the postoperative flexion angle. Surgeons should take medial and lateral laxity into account when considering PF joint kinematics influencing postoperative flexion angle in PS TKA.
It is generally accepted that the cement mantle surrounding the femoral component of a cemented total hip arthroplasty (THA) should be complete without any defects, and of at least 2 mm in thickness. Radiographic evaluation is the basis for assessment of the cement mantle. The adequacy of radiographic interpretation is subject to debate. Poor interobserver and intraobserver reproducibility of radiographic cement mantle assessment has been reported. In this study, 3D template software was used that allow anatomical measurements and analysis of three-dimensional digital femura geometry based on CT scans. The purpose of this study is to analyze the three-dimensional cement mantle thickness of cemented hip stem. 52 hips that underwent THA with Exeter stem (Stryker Orthopaedics, Mahwah, NJ) were enrolled in this study. All surgeries were performed by a single surgeon. There were 49 hips in 49 women and 3 hips in 3 men. The average age at surgery was 73 years (range, 60–88 years). The etiology of the hip lesions were osteoarthrosis in 49, rheumatoid arthritis in 3, and osteonecrosis of the femoral head in 1. For preoperative and postoperative evaluation, a CT scan of the pelvis and knee joint was obtained and was transferred to 3D template software (Zed hip, Lexi, Tokyo, Japan). We evaluated the alignment for stem anteversion/valgus/anterior tilt angles and the contact of the cortical bone with the cement mantle was evaluated.Purpose
Materials and Methods
Data on varus-valgus and rotational profiles can be obtained during navigated total knee arthroplasty (TKA). Such intraoperative kinematic data might provide instructive clinical information for refinement of surgical techniques, as well as information on the anticipated postoperative clinical outcomes. However, few studies have compared intraoperative kinematics and pre- and postoperative clinical outcomes; therefore, the clinical implications of intraoperative kinematics remain unclear. In clinical practice, subjects with better femorotibial rotation in the flexed position often achieve favorable postoperative range of motion (ROM); however, no objective data have been reported to prove this clinical impression. Hence, the present study aimed to investigate the correlation between intraoperative rotation and pre- and postoperative flexion angles. Twenty-six patients with varus osteoarthritis undergoing navigated posterior-stabilized TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. An image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker) was used for the operation. Registration was performed after minimum soft tissue release and osteophyte removal. Then, maximum internal and external rotational stress was manually applied on the knee with maximum extension and 90° flexion by the same surgeon, and the rotational angles were recorded using the navigation system. After knee implantation, the same rotational stress was applied and the rotational angles were recorded again. In addition, ROM was measured before surgery and at 1 month after surgery. The correlation between the amount of pre- and postoperative tibial rotation and ROM was statistically evaluated.Background
Materials and Methods
Surgeons sometimes encounter moderate or severe varus deformed osteoarthritic cases in which medial substantial release including semimembranosus is compelled to appropriately balance soft tissues in total knee arthroplasty (TKA). However, medial stability after TKA is important for acquisition of proper knee kinematics to lead to medial pivot motion during knee flexion. The purpose of the present study is to prove the hypothesis that step by step medial release, especially semimembranosus release, reduces medial stability in cruciate-retaining (CR) total knee arthroplasty (TKA). Twenty CR TKAs were performed in patients with moderate varus-type osteoarthritis (10° < varus deformity <20°) using the tibia first technique guided by a navigation system (Orthopilot). During the process of medial release, knee kinematics including tibial internal rotation and anterior translation during knee flexion were assessed using the navigation system at 3 points; (1) after anterior cruciate ligament resection (pre-release), (2) medial tibial and femoral osteophyte removal and release of minimum deep layer of medial collateral ligament (minimum release) and (3) release of semimembranosus (semimembranosus release). In addition, the kinematics after all prostheses implantation (semimembranosus release group) were assessed and compared with those assessed in another 20 patients in which only minimum release was performed (minimum release group).Purpose
Methods
Increased long-term survival of TKA is becoming more important. Several studies have confirmed that optimal positioning and alignment of prosthetic components is crucial for the best long-term results. Therefore, the purpose of the current study was to compare the postoperative alignment and sizing of femoral prosthesis among patients performed by 3 different navigation systems. Twenty patients who underwent primary TKA (E. motion; B. Braun Aesculap, Tuttlingen, Germany) using a CT-free navigation system (OrthoPilot v 4.2) by modified gap technique were enrolled in this study. The results of this study group were retrospectively compared with those in a control group of 20 matched-paired posterior stabilized TKAs (Triathlon;Stryker; Mahwah, NJ, USA) which were using another CT-free navigation system (Stryker Navigation System) by measured technique and 20 matched-paired posterior stabilized TKAs (Press-fit Condylar prosthesis; DePuy, Tokyo, Japan) using CT-based navigation system (VectorVision) by measured technique. Several parameters were evaluated for each patient using Athena Knee (Softcube Co, Ltd. Osaka, Japan), 3-D image-matching software. The coronal component angles and sagittal component angles were measured in relation to mechanical axis (MA). In addition, axial femoral component angle was measured in relation to surgical epicondylar axis (SEA) and axial tibial component angle was measured in relation to Akagi line.Introduction
Methods
The axis of the fibula in the sagittal plane are known as a landmark for the extramedullary guide in order to minimize posterior tibial slope measurement error in the conventional total knee arthroplasty (TKA). However, there are few anatomic studies about them. We also wondered if the fibula in the coronal plane could be reliable landmark for the alignment of the tibia. This study was conducted to confirm whether the fibula is reliable landmark in coronal and sagittal plane. We evaluated 60 osteoarthritic knees after TKA using Athena Knee (SoftCube Co, Ltd, Osaka, Japan) 3-D image-matching software. Angle between the axis of the fibula (FA) and the mechanical axis (MA) in the coronal and sagittal plane were measured.Background:
Methods:
Accurate soft tissue balancing has been recognized as important as alignment of bony cut in total knee arthroplasty (TKA). In addition, using a tensor for TKA that is designed to facilitate soft tissue balance measurements throughout the range of motion with a reduced patello-femoral (PF) joint and femoral component in place, PF joint condition (everted or reduced) has been proved to have a significant effect for intra-operative soft tissue balance. On the other hand, effect of patellar height on intra-operative soft tissue balance has not been well addressed. Therefore, in the present study, we investigated the effect of patellar height by comparing intra-operative soft tissue balance of patella higher subjects (Insall-Salvati index>1) and patella lower subjects (Insall-Salvati indexâ‰/1). The subjects were 30 consecutive patients (2 men, 28 women), who underwent primary PS TKA (NexGen LPS-flex PS: Zimmer, Warsaw, IN, USA) between May 2003 and December 2006. All cases were osteoarthritis with varus deformity. Preoperative Insall-Salvati index (ISI) was measured and patients were divided into two groups; the patella higher group (ISIï1/4ž1: 18 knees average ISI was 1.12) and the patella lower group (ISIâ‰/1; 12 knees average ISI was 0.94). Component gap and ligament balance (varus angle) were measured using offset-type tensor with 40lb distraction force after osteotomy with the PF joint reduced and femoral trial in place at 0, 10, 45, 90, 135 degrees of knee flexion. Data of two groups were compared using unpaired t test.Introduction
Materials and methods
Total knee arthroplasty (TKA) with a computer-assisted navigation system has been developed to improve the accuracy of the alignment of osteotomies and implantations. One of the most important goals of TKA is to improve the flexion angle. Although accurate soft tissue balancing has been recognized as an essential surgical intervention influencing flexion angle, the direct relationship between post-operative flexion angle and intra-operative soft tissue balance during TKA, has little been clarified. In the present study, therefore, we focused on the relationship between them in cruciate-retaining (CR) TKA with a navigation system. The subjects were 30 consecutive patients (2 men, 28 women), who underwent primary CR TKA (B. Braun Aesculap, e-motion) between May 2006 and December 2009. TKAs were performed using a image-free navigation system (OrthoPilot; B. Braun Aesculap, Tuttlingen, Germany). All cases were osteoarthritis with varus deformity. Average patient age at the time of surgery was 74.0 years (range, 62-86 years). After all bony resections and soft tissue releases were completed appropriately using a navigation system with tibia-first gap technique, a tensor was fixed to the proximal tibia and the femoral trial was fitted. Using the tensor that is designed to facilitate soft tissue balance measurements throughout the range of motion with a reduced patello-femoral (PF) joint and femoral component in place, the joint component gap and ligament balance (varus angle) were measured after the PF joint reduced and femoral component in place (Fig.1). Assessments of joint component gap and ligament balance were carried out at 0°, 30°, 60°, 90°, 120° flexion angle, which were monitored by the navigation system. Joint component gap change values during 30°- 0°, 60°- 0°, 90°- 0°, 120°- 0° flexion angle were calculated. The correlation between post operative flexion angles and pre-operative flexion angle, intra-operative joint component gaps, joint component gap change values and ligament balances were assessed using linear regression analysis.Introduction
Materials and methods
Using a tensor for total knee arthroplasty (TKA) that is designed to facilitate soft tissue balance measurements with a reduced patello-femoral (PF) joint, we examined the influence of pre-operative deformity on intra-operative soft tissue balance during posterior-stabilized (PS) TKA. Joint component gap and varus angle were assessed at 0, 10, 45, 90 and 135° of flexion with femoral trial prosthesis placed and PF joint reduced in 60 varus type osteoarthritic patients. Joint gap measurement showed no significant difference regardless the amount of pre-operative varus alignment. With the procedures of soft tissue release avoiding joint line elevation, however, intra-operative varus angle with varus alignment of more than 20 degrees exhibited significant larger values compared to those with varus alignment of less than 20 degrees throughout the range of motion. Accordingly, we conclude that pre-operative severe varus deformity may have the risk for leaving post-operative varus soft tissue balance during PS TKA.