Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 171 - 171
1 Dec 2013
Shimmin A Martos SM Owens J Iorgulescu A
Full Access

Introduction

The SAIPH™ (MatOrtho, UK) total knee replacement is a new fixed-bearing prosthesis design having attributes of a mobile bearing and the posterior stabilised categories for knee arthroplasties. The implant design goal is an articulation that provides definitive anteroposterior stability to beneficially control tibiofemoral translation, the ability for the tibia to axially rotate to accommodate various lifestyle activities, and to maintain a relatively posterior femoral position on the tibia to facilitate range of motion. This study aims to analyze knee kinematics of the SAIPH™ total knee arthroplasty (TKA) by videofluroscopy during four different weightbearing activities.

Method

Fourteen consecutive patients operated on by a single surgeon, with a minimum follow up of 24 months were included in this IRB-approved study. A medially conforming knee was implanted in all cases. Participants in the study were asked to perform weightbearing kneeling, lunging, step-up/down and pivoting activities while their knee motions were recorded by videofluoroscopy. Three-dimensional (3D) joint kinematics were determined using model-image registration. The 3D orientation of each TKA component was expressed using standard joint angle conventions, and the anterior/posterior location of each condyle was expressed relative to the deepest part of the tibial sulcus.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 476 - 476
1 Dec 2013
Banks S Watanabe T Kreuzer SW Leffers K Conditt M Jones J Park B Dunbar N Iorgulescu A
Full Access

INTRODUCTION

There is strong current interest to provide reliable treatments for one- and two-compartment arthritis in the cruciate-ligament intact knee. An alternative to total knee arthroplasty is to resurface only the diseased compartments with discrete compartmental components. Placing multiple small implants into the knee presents a greater surgical challenge than total knee arthroplasty, and it is not certain natural knee mechanics can be maintained. The goal of this study was to compare functional kinematics in cruciate-intact knees with either medial unicondylar (mUKA), mUKA plus patellofemoral (mUKA+PF), or bi-unicondylar (biUNI) arthroplasty using discrete compartmental implants with preparation and placement assisted by haptic robotic technology.

METHODS

Nineteen patients with 21 knee arthroplasties consented to participate in an I.R.B. approved study of knee kinematics with a cruciate-retaining multicompartmental knee arthroplasty system. All subjects presented with knee OA, intact cruciate ligaments, and coronal deformity ranging from 7° varus to 4° valgus. All subjects received multicompartmental knee arthroplasty using haptic robotic-assisted bone preparation an average of 13 months (6–29 months) before the study. Eleven subjects received mUKA, five subjects received mUKA+PF, and five subjects received biUKA. Subjects averaged 62 years of age and had an average body mass index of 31. Combined Knee Society Pain/Function scores averaged 102 ± 28 preoperatively and 169 ± 26 at the time of study. Knee range of motion averaged −3° to 120° preoperatively and −1° to 129° at the time of the study.

Knee motions were recorded using video-fluoroscopy while subjects performed step-up/down, kneeling and lunging activities. The three-dimensional position and orientation of the implant components were determined using model-image registration techniques (Fig. 1). The AP locations of the medial and lateral condyles were determined by computing a distance map between the femoral condyles and the tibial articular surfaces.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 200 - 200
1 Dec 2013
Watanabe T Muneta T Sekiya I Dunbar N Iorgulescu A Banks S
Full Access

Introduction:

Adjusting joint gaps and establishing mediolateral (ML) soft tissue balance are considered essential interventions for better outcomes in total knee arthroplasty (TKA). However, the relationship between intraoperative laxity measurements and weight-bearing knee kinematics has not been well explored. The goal of this study was to establish how intraoperative joint gaps and ML soft tissue balance affect postoperative kinematics in posterior-stabilized (PS)-TKA.

Methods:

We investigated 44 knees with 34 patients who underwent primary PS-TKA. Subjects averaged 71 ± 7 years at the time of surgery, included 8 male and 36 female knees with a preoperative diagnosis of osteoarthritis in 38 knees and rheumatoid arthritis in 6 knees. A single surgeon performed all the surgeries with mini-midvastus approach. After independent bone cutting, soft tissues were released on a case-by-case basis to obtain ML balance. The femoral trial and a tensor were put in place, and the patella was reduced to the original position. A joint distraction force of 40 lb was applied by the tensor, and the central joint gaps and ML tilting angles were measured at 0°, 10°, 30°, 60°, 90°, 120° and 135° flexion (Fig. 1). We defined a “gap difference” as a gap size difference between one gap and another, which represents the gap change between the two knee flexion positions. ML soft tissue balance was assessed by measuring the mean joint gap tilting angle over all flexion angles for each patient. Based on the tilting angle, the 44 knees were classified into three groups: The knees with the mean joint gap tilting of less than −1.0° (13 knees), between −1.0 and 1.0° (14 knees), and over 1.0° (17 knees). At least 1.5 year after surgery, a series of dynamic squat radiographs and 3 static lateral radiographs of straight-leg standing, lunge at maximum flexion, and kneeling at maximum flexion, were taken for each patient. The 3-dimensional position and orientation of the implant components were determined using model-based shape matching techniques (Fig. 2). Correlations between intraoperative measurements and knee kinematics were analyzed. The knee kinematics was also compared among three tilting groups.