Using a reverse engineering capability to quantify the factors that control the rigid body mechanics of the wrist, a mathematical forward animation capability and model of wrist motion that allows the carpus to move under its own rules is being developed. This characterises the isometric connections, from which was developed the Stable Central Column Theory of Carpal Mechanics - which incorporates the Law of Rules Based Motion. This work has now advanced to the ability to reapply the extracted rules to allow rules-based rigid body reanimation of an individual wrist. As each wrist is unique, there is a given reality that each reanimation must be based on an individual wrist's unique rules, and the aspiration to create a standard or normal wrist is unrealistic. Using In the preliminary application of this biomechanics environment, by using the reverse engineering / forward reanimation process, wrist motion can be recreated - based purely on the unique rules, extracted from individual wrists. Instability of the proximal scaphoid was evident in several of the animations, and there was confirmation that the spatial attachment points of the isometric constraints are very exacting. The actual attachment and specific morphology of the carpal bones varied between individual wrists. Using a reverse engineering and then forward reanimation process, we have been able to recreate wrist motion using the rigid body mechanics based on the Law of Rules Based Motion. Further work is required, but the potential to apply “what if” virtual surgery options to an individual injured wrist and more precisely characterise and test solutions to wrist dysfunction are becoming realised.